10Be-accompanied ternary fission of Cf isotopes: a level density formulation

Abstract

10Be-accompanied ternary fission of Cf isotopes has been studied using the level density formulation. The fragment combinations are determined by minimizing the driving potential at the touching configurations of three fragments using deformed Coulomb and deformed proximity potential and the yield has been determined by the level density formulation. In addition to the usual procedure of taking the yield for fragmentations, which is proportional to the total level density at a particular temperature, calculations have also done with the assumption that the probability is proportional to total number of states in a range of energy. Three sets of calculations have been done by taking different ranges of temperatures and compared with the experimental data for 252Cf. On the basis of the agreement noticed, the calculations have been extended into all even mass isotopes of Cf and the major fragmentations involved in the 10Be-accompanied ternary fission of Cf isotopes have been predicted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    G. Farwell, E. Segre, C. Wiegand, Phys. Rev. 71, 327 (1947)

    ADS  Article  Google Scholar 

  2. 2.

    J.H. Hamilton, A.V. Ramayya, J.K. Hwang, J. Kormicki, Prog. Part. Nucl. Phys. 38, 273 (1997)

    ADS  Article  Google Scholar 

  3. 3.

    P.B. Vitta, Nucl. Phys. A 170, 417 (1971)

    ADS  Article  Google Scholar 

  4. 4.

    A.V. Ramayya, J.H. Hamilton, J.K. Hwang, L.K. Peker, Phys. Rev. C 57, 2370 (1998)

    ADS  Article  Google Scholar 

  5. 5.

    YuV Pyatkov, D.V. Kamanin, A.A. Alexandrov, I.A. Alexandrova, Phys. At. Nucl. 66, 1631 (2003)

    Article  Google Scholar 

  6. 6.

    K.P. Santhosh, S. Krishnan, B. Priyanka, Phys. Rev. C 91, 044603 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    K. Manimaran, M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    C. Karthikraj, Z. Ren, Phys. Rev. C 96, 064611 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    C. Karthikraj, Z. Ren, J. Phys. G: Nucl. Part. Phys. 44, 065102 (2017)

    ADS  Article  Google Scholar 

  10. 10.

    M.T. Senthil Kannan, M. Balasubramaniam, Eur. Phys. J. A 53, 164 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    C. Karthikraj, S. Subramanian, S. Selvaraj, Eur. Phys. J. A 52, 173 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    M. Balasubramaniam, C. Karthikraj, S. Selvaraj, N. Arunachalam, Phys. Rev. C 90, 054611 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    V.A. Rubchenya, S.G. Yavshits, Z. Phys. A Atom. Nuclei 329, 217 (1988)

    ADS  Article  Google Scholar 

  14. 14.

    K. Sneppen, L. Vinet, Nucl. Phys. A 480, 342 (1988)

    ADS  Article  Google Scholar 

  15. 15.

    S. Leray, C. Ngo, M.E. Spina, B. Remaud, F. Sebille, Nucl. Phys. A 511, 414 (1990)

    ADS  Article  Google Scholar 

  16. 16.

    J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (NY) 105, 427 (1977)

    ADS  Article  Google Scholar 

  17. 17.

    G. Royer, J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781 (1992)

    ADS  Article  Google Scholar 

  18. 18.

    K.J. Le Couteur, D.W. Lang, Nucl. Phys. 13, 32 (1959)

    Article  Google Scholar 

  19. 19.

    W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967)

    Google Scholar 

  20. 20.

    J. Blocki, W.J. Swiatecki, Ann. Phys. (NY) 132, 53 (1983)

    ADS  Article  Google Scholar 

  21. 21.

    C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    ADS  Article  Google Scholar 

  22. 22.

    N. Malhotra, R.K. Gupta, Phys. Rev. C 31, 1179 (1985)

    ADS  Article  Google Scholar 

  23. 23.

    R.K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh, M. Manhas, W. Greiner, J. Phys. G: Nucl. Part. Phys. 31, 631 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    A.J. Baltz, B.F. Bayman, Phys. Rev. C 26, 1969 (1982)

    ADS  Article  Google Scholar 

  25. 25.

    H. Bethe, Rev. Mod. Phys. 9, 69 (1937)

    ADS  Article  Google Scholar 

  26. 26.

    P. Fong, Phys. Rev. 102, 434 (1956)

    ADS  Article  Google Scholar 

  27. 27.

    Y.J. Yao, G.L. Zhang, W.W. Qu, J.Q. Qian, Eur. Phys. J. A 51, 122 (2015)

    ADS  Article  Google Scholar 

  28. 28.

    O.N. Ghodsi, A.D. Ataollah, Phys. Rev. C 93, 024612 (2016)

    ADS  Article  Google Scholar 

  29. 29.

    K.P. Santhosh, I. Sukumaran, Eur. Phys. J. A 53, 246 (2017)

    ADS  Article  Google Scholar 

  30. 30.

    K.P. Santhosh, I. Sukumaran, Competes Rendus Physique 19, 347 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    K.P. Santhosh, I. Sukumaran, Eur. Phys. J. A 53, 136 (2017)

    ADS  Article  Google Scholar 

  32. 32.

    K.P. Santhosh, J.G. Joseph, Phys. Rev. C 86, 024613 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    K.P. Santhosh, C. Nithya, Phys. Rev. C 97, 064616 (2018)

    ADS  Article  Google Scholar 

  34. 34.

    M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S.N.X. Xu, Chin. Phys. C 41, 030003 (2017)

    ADS  Article  Google Scholar 

  35. 35.

    https://www-nds.iaea.org/RIPL-3/

  36. 36.

    http://w.w.w.nds.iaea.org/RIPL-2

  37. 37.

    P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewer for the useful suggestions and comments which helped to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. P. Santhosh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santhosh, K.P., Joseph, J.G. 10Be-accompanied ternary fission of Cf isotopes: a level density formulation. Eur. Phys. J. Plus 135, 512 (2020). https://doi.org/10.1140/epjp/s13360-020-00522-5

Download citation