Conformal vector fields over Lyra manifold of locally rotationally symmetric Bianchi type I spacetimes

Abstract

In this paper the conformal vector fields (CVFs) of locally rotationally symmetric (LRS) Bianchi type-I spacetime in Lyra geometry have been explored. The obtained CVFs are admitted by some special classes of the metrics of LRS Bianchi type-I spactime. The obtained metrics are then utilized into Einstein field equations (EFEs) of Lyra geometry to find the displacement vector (DV), density and pressure in the case of a perfect fluid matter. Some physical quantities like expansion scalar, Hubble parameter, shear scalar, average anisotropy parameter, deceleration parameter and the relative anisotropy of the obtained metrics are also discussed. It has been observed that conformal symmetry plays a vital role at the era of evolution of cosmos.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi, Phys. Lett. B. 639, 135 (2006)

    ADS  Article  Google Scholar 

  2. 2.

    H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)

    ADS  Article  Google Scholar 

  3. 3.

    A.A. Starobinsky, Phys. Lett. 91B, 99 (1980)

    ADS  Article  Google Scholar 

  4. 4.

    R. Kerner, Gen. Relativ. Gravit. 14, 453 (1982)

    ADS  Article  Google Scholar 

  5. 5.

    J.D. Barrow, S. Cotsakis, Phys. Lett. B 214, 515 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    A.A. Starobinsky, JETP Lett. 86, 157 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    MathSciNet  Article  Google Scholar 

  8. 8.

    S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    R. Weitzenböck, Invarianten-Theorie (Groningen, Noordhoft, 1923)

    Google Scholar 

  10. 10.

    G.R. Bengochea, R. Ferraro, Phys. Rev. D. 79, 124019 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    G. Lyra, Math. Z. 54, 52 (1951)

    MathSciNet  Article  Google Scholar 

  12. 12.

    W.D. Halford, Aust. J. Phys. 23, 863 (1970)

    ADS  Article  Google Scholar 

  13. 13.

    M. Sharif, B. Majeed, Commun. Theor. Phys. 52, 435 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    G. Shabbir, S. Khan, Mod. Phys. Lett. A 25, 1733 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    S. Khan, T. Hussain, A.H. Bokhari, G.A. Khan, Eur. Phys. J. C 75, 523 (2015)

    ADS  Article  Google Scholar 

  16. 16.

    G. Shabbir, S. Khan, A. Ali, Commun. Theor. Phys. 55, 268 (2011)

    Article  Google Scholar 

  17. 17.

    S. Khan, T. Hussain, A.H. Bokhari, G.A. Khan, Eur. Phys. J. C 75, 523 (2015)

    ADS  Article  Google Scholar 

  18. 18.

    G. Shabbir, M. Ramzan, Appl. Sci. 9, 148 (2007)

    MathSciNet  Google Scholar 

  19. 19.

    G.S. Hall, Symmetries and Curvature Structure in General Relativity (World Scientific, Singapore, 2004)

    Google Scholar 

  20. 20.

    H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselears, E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  21. 21.

    G. Shabbir, A.B. Mehmood, Mod. Phys. Lett. A 22, 807 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    G.S. Hall, Gravit. Cosmol. 2, 270 (1996)

    Google Scholar 

  23. 23.

    G.S. Hall, Gen. Relat. Gravit. 30, 1099 (1998)

    ADS  Article  Google Scholar 

  24. 24.

    A.M. Sintes, P.M. Benotit, A.A. Coley, Gen. Relat. Gravit. 33, 1863 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    P.S. Wesson, J. Math. Phys. 19, 2283 (1978)

    ADS  Article  Google Scholar 

  26. 26.

    R.M. Gad, IL Nuovo Cimento B 11, 533 (2002)

    ADS  MathSciNet  Google Scholar 

  27. 27.

    R.M. Gad, M.M. Hassan, IL Nuovo Cimento B 12, 759 (2003)

    ADS  Google Scholar 

  28. 28.

    G. Shabbir, S. Khan, Commun. Theor. Phys. 54, 469 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    M. Sharif, M.J. Amir, Mod. Phys. Lett. A 23, 963 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    G. Shabbir, A. Ali, S. Khan, Chin. Phys. B 20, 070401 (2011)

    Article  Google Scholar 

  31. 31.

    R.M. Gad, A.S. Alofi, Mod. Phys. Lett. A 29, 1450116 (2014)

    ADS  Article  Google Scholar 

  32. 32.

    R.M. Gad, Int. J. Theor. Phys. 54, 2932 (2015)

    Article  Google Scholar 

  33. 33.

    M. Tsamparlis, A. Paliathanasis, L. Karpathopoulos, Gen. Relativ. Gravit. 47, 15 (2015)

    ADS  Article  Google Scholar 

  34. 34.

    R. Maartens, S.D. Maharaj, B.O.J. Tupper, J. Math. Phys. 27, 2987 (1986)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    A.A. Coley, B.O.J. Tupper, Class. Quantum Gravity 11, 2553 (1994)

    ADS  Article  Google Scholar 

  36. 36.

    M. Tsamparlis, Class. Quantum Gravity 15, 2901 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    D.K. Sen, Z. Phys. 149, 311 (1957)

    ADS  Article  Google Scholar 

  38. 38.

    S. Khan, S.Z. Ullah, M. Ramzan, M. Ayaz, J. Jordan Phys. 12, 163 (2019)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suhail Khan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Khan, I. & Khan, S. Conformal vector fields over Lyra manifold of locally rotationally symmetric Bianchi type I spacetimes. Eur. Phys. J. Plus 135, 499 (2020). https://doi.org/10.1140/epjp/s13360-020-00518-1

Download citation