Effect of zinc substitution on crystal structure and magnetocaloric properties of ZnFe3N nitride

Abstract

The crystal structure, electromagnetic properties and magnetocaloric effect (MCE) of ternary iron-based ZnFe3N nitride have been investigated systematically. The density of states (DOS) calculation combined with theoretical model analysis suggests that ZnFe3N has a second-order ferromagnetic phase transition process existing in the cubic system. Its saturation magnetization (Ms) is about 108.3 emu/g at 5 K. The maximum values of magnetic entropy change (|ΔSM| = 2.2984 J/kg K) and relative cooling power (RCP = 247.0671 J/kg) are calculated from the measurements at a magnetic field change ΔH = 50 kOe, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    E. Warburg, Magnetische untersuchungen. Ann. Phys. 13(141), 569 (1881)

    MATH  Google Scholar 

  2. 2.

    A.M. Tishin, Y.I. Spichkin, The magnetocaloric effect and its applications (Institute of Physics Publishing, Bristol, 2003)

    Google Scholar 

  3. 3.

    V.K. Pecharsky, K.A. Gschneidner Jr., Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200(1–3), 44–56 (1999)

    ADS  Google Scholar 

  4. 4.

    A. Smith et al., Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy. Mater. 2(11), 1288–1318 (2012)

    Google Scholar 

  5. 5.

    K.A. Gschneidner Jr, V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68(6), 1479 (2005)

    ADS  Google Scholar 

  6. 6.

    E. Brück, Developments in magnetocaloric refrigeration. J. Phys. D Appl. Phys. 38(23), R381 (2005)

    ADS  Google Scholar 

  7. 7.

    V. Provenzano, A.J. Shapiro, R.D. Shull, Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429(6994), 853 (2004)

    ADS  Google Scholar 

  8. 8.

    K.A. Gschneidner Jr., Vitalij K. Pecharsky, Magnetocaloric materials. Annu. Rev. Mater. Sci. 30(1), 387–429 (2000)

    ADS  Google Scholar 

  9. 9.

    B.S. Wang et al., Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3. J. Appl. Phys. 108(9), 093925 (2010)

    ADS  Google Scholar 

  10. 10.

    D. Boldrin et al., Multisite exchange-enhanced barocaloric response in Mn3NiN. Phys. Rev. X. 8(4), 041035 (2018)

    Google Scholar 

  11. 11.

    S. Suetsugu et al., Magnetotransport in Sr3PbO antiperovskite. Phys. Rev. B. 98(11), 115203 (2018)

    ADS  Google Scholar 

  12. 12.

    S. Lin et al., Critical behavior in the itinerant ferromagnet AsNCr3 with tetragonal-antiperovskite structure. Phys. Rev. B. 98(1), 014412 (2018)

    ADS  Google Scholar 

  13. 13.

    Y.B. Li et al., Magnetic, transport and magnetotransport properties of Mn3+xSn1−xC and Mn3ZnySn1−yC compounds. Phys. Rev. B. 72(2), 024411 (2005)

    ADS  Google Scholar 

  14. 14.

    S. Lin et al., Composition dependent-magnetocaloric effect and low room-temperature coefficient of resistivity study of iron-based antiperovskite compounds Sn1−xGaxCFe3 (0 ≤ x ≤ 1.0). Appl. Phys. Lett. 99(17), 172503 (2011)

    ADS  Google Scholar 

  15. 15.

    S. Lin et al., The magnetic, electrical transport and thermal transport properties of Fe-based antipervoskite compounds ZnCxFe3. J. Appl. Phys. 110(8), 083914 (2011)

    ADS  Google Scholar 

  16. 16.

    B.S. Wang et al., Reversible room-temperature magnetocaloric effect with large temperature span in antiperovskite compounds Ga1−xCMn3+x (x = 0, 0.06, 0.07, and 0.08). J. Appl. Phys. 105(8), 083907 (2009)

    ADS  Google Scholar 

  17. 17.

    S. Lin et al., The structural, magnetic, electrical/thermal transport properties and reversible magnetocaloric effect in Fe-based antipervoskite compound AlC1.1Fe3. J. Magn. Magn. Mater. 324(20), 3267–3271 (2012)

    ADS  Google Scholar 

  18. 18.

    S.J. Clark et al., First principles methods using CASTEP. Z. Für Kristallogr. Cryst. Mater. 220(5/6), 567–570 (2005)

    ADS  Google Scholar 

  19. 19.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  20. 20.

    J.D. Pack, H.J. Monkhorst, Special points for Brillouin-zone integrations—a reply. Phys. Rev. B. 16(4), 1748 (1977)

    ADS  Google Scholar 

  21. 21.

    Y.R. Jang, I.G. Kim, J.I. Lee, Electronic structure and magnetic properties of Fe4N (0 0 1). J. Magn. Magn. Mater. 263(3), 366–372 (2003)

    ADS  Google Scholar 

  22. 22.

    M. Sifkovits et al., Interplay of chemical bonding and magnetism in Fe4N, Fe3N and ζ-Fe2N. J. Magn. Magn. Mater. 204(3), 191–198 (1999)

    ADS  Google Scholar 

  23. 23.

    E.L. Blancá, Y. Peltzer et al., The magnetization of γ′-Fe4N: theory versus experiment. Phys. Status Solidi B 246(5), 909–928 (2009)

    ADS  Google Scholar 

  24. 24.

    P. Monachesi et al., Electronic structure and magnetic properties of Mn Co, and Ni substitution of Fe in Fe4N. Phys. Rev. B 88(5), 054420 (2013)

    ADS  Google Scholar 

  25. 25.

    A.V.G. Rebaza, J. Desimoni, E.L. Peltzer, Blancá, Study on the oscillatory behaviour of the lattice parameter in ternary iron–nitrogen compounds. Phys. B 407(16), 3240–3243 (2012)

    ADS  Google Scholar 

  26. 26.

    D. Music et al., Thermal expansion and elasticity of PdFe3N within the quasiharmonic approximation. Eur. Phys. J. B 77(3), 401–406 (2010)

    ADS  Google Scholar 

  27. 27.

    P. Mohn et al., Calculated electronic and magnetic structure of the nitrides NiFe3N and PdFe3N. Phys. Rev. B 45(8), 4000 (1992)

    ADS  Google Scholar 

  28. 28.

    C.A. Kuhnen, A.V. Dos Santos, Ground-state and thermal properties of substituted iron nitrides. J. Alloys. Compd. 279(1–2), 68–72 (2000)

    Google Scholar 

  29. 29.

    J. Von Appen, D. Richard, Predicting new ferromagnetic nitrides from electronic structure theory: IrFe3N and RhFe3N. Angew. Chem. Int. Ed. 44(8), 1205–1210 (2005)

    Google Scholar 

  30. 30.

    D. Music, J.M. Schneider, Elastic properties of MFe3N (M = Ni, Pd, Pt) studied by ab initio calculations. Appl. Phys. Lett. 88(3), 031914 (2006)

    ADS  Google Scholar 

  31. 31.

    T. Scholz, A. Leineweber, R. Dronskowski, Comment on “High-temperature soft magnetic properties of antiperovskite nitrides ZnNFe3 and AlNFe3. J. Magn. Magn. Mater. 416, 475–476 (2016)

    ADS  Google Scholar 

  32. 32.

    B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Rev. Lett. 12, 16–17 (1964)

    ADS  Google Scholar 

  33. 33.

    M. Iqbal, M.N. Khan, A.A. Khan, Structural, magnetic, magnetocaloric and critical behavior studies in the vicinity of the paramagnetic to ferromagnetic phase transition temperature in LaMnO3+δ compound. J. Magn. Magn. Mater. 465, 670–677 (2018)

    ADS  Google Scholar 

  34. 34.

    T. Tohei, H. Wada, T. Kanomata, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC. J. Appl. Phys. 94(3), 1800–1802 (2003)

    ADS  Google Scholar 

  35. 35.

    M.-H. Phan, Y. Seong-Cho, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007)

    ADS  Google Scholar 

  36. 36.

    V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89(22), 222512 (2006)

    ADS  Google Scholar 

  37. 37.

    R. Zeng et al., Magnetic properties and magnetocaloric effect of (Mn1-xNix)3Sn2 (x = 0–0.5) compounds. J. Appl. Phys. 105(7), 07A935 (2009)

    Google Scholar 

  38. 38.

    M.A. Hamad, Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Trans. 85(1–2), 106–112 (2012)

    Google Scholar 

  39. 39.

    C.L. Zhang et al., Large magnetic entropy changes in Gd–Co amorphous ribbons. J. Appl. Phys. 105(1), 013912 (2009)

    ADS  Google Scholar 

  40. 40.

    X.C. Kan et al., Magnetic and structural phase diagram of antiperovskites ZnCFe3−xCox (0 ≤ x ≤ 3): the combined negative magnetoresistance and large room-temperature magnetocaloric effect in x = 0.5. J. Alloys. Compd. 693, 895–901 (2017)

    Google Scholar 

  41. 41.

    B.S. Wang et al., Structural, magnetic properties and magnetocaloric effect in Ni-doped antiperovskite compounds GaCMn3−xNix (0 ≤ x ≤ 0.10). Physica B. 405(10), 2427–2430 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Nos. 51802002 and 51872004), Anhui Department of Education Foundation (Grant Nos. KJ2018A0039) and the Key Program of the Science and Technology Department of Anhui Province (Grant Nos. S201904a09020074), China. This work was also supported by High-Performance Computing Platform of Anhui University, China.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xucai Kan or Xiansong Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Kan, X., Liu, X. et al. Effect of zinc substitution on crystal structure and magnetocaloric properties of ZnFe3N nitride. Eur. Phys. J. Plus 135, 505 (2020). https://doi.org/10.1140/epjp/s13360-020-00512-7

Download citation