Characteristics of a laser system in complex field and its complex self-synchronization

Abstract

Chaotic dynamics play a vital role in real secure communication and image encryption. This paper focuses on the characteristic analysis and complex self-synchronization (CSS) of a laser system in complex field. Its dynamical features are described by Lyapunov exponent spectrum, bifurcation diagram, phase portrait and the basin of attraction. The result of the investigation shows some attractive dynamical behaviors such as two different bifurcation routes, coexistence of axis-symmetric attractors, intermittent chaos and infinite transition of period and sink. In particular, two chaotic attractors with different topological structures are implemented on digital signal processor platform. Finally, the CSS is defined, and a novel scheme is proposed to achieve homogeneous and heterogeneous CSS of the laser complex-variable chaotic systems in complex field. The researches provide basis for the laser system in real applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    A.C. Fowler, J.D. Gibbon, Phys. D. 4, 139 (1982)

    Article  Google Scholar 

  2. 2.

    J.D. Gibbon, M.J. McGuinnes, Phys. D. 5, 108 (1982)

    MathSciNet  Article  Google Scholar 

  3. 3.

    H. Zeghlache, P. Mandel, J. Opt. Soc. Am. B. 2, 18 (1985)

    ADS  Article  Google Scholar 

  4. 4.

    C.Z. Ning, H. Haken, Phys. Rev. A 41, 3826 (1990)

    ADS  Article  Google Scholar 

  5. 5.

    G.M. Mahmoud, E.E. Mahmoud, M.E. Ahmed, Nonlinear Dyn. 58, 725 (2009)

    Article  Google Scholar 

  6. 6.

    E.E. Mahmoud, Math. Comput. Model. 55, 1951 (2012)

    Article  Google Scholar 

  7. 7.

    J. Liu, S.T. Liu, F.F. Zhang, Abstr. Appl. Anal. 2014, 257327 (2014)

    Google Scholar 

  8. 8.

    C. Luo, X. Wang, Nonlinear Dyn. 71, 241 (2013)

    Article  Google Scholar 

  9. 9.

    G.M. Mahmoud, A.A. Mohamed, S.A. Aly, Phys. Lett. A. 292(1), 193 (2001)

    Google Scholar 

  10. 10.

    G.M. Mahmoud, T. Bountis, E.E. Mahmoud, Int J. Bifurc. Chaos. 17, 4295 (2007)

    Article  Google Scholar 

  11. 11.

    C. Luo, X. Wang, Int. J. Mod. Phys. C 24(04), 1350025 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    T. Živkovic, K. Rypdal, Phys. Rev. E 77, 037401 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    Z.Y. Wu, G.R. Chen, X.C. Fu, Chaos. 22, 023127 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    S. Jafari et al., Nonlinear Dyn. 83(1–2), 615 (2016)

    Article  Google Scholar 

  15. 15.

    G.H.M. Van Tartwijk, G.P. Agrawal, IEEE J. Quantum Elect. 34, 1854 (1998)

    ADS  Article  Google Scholar 

  16. 16.

    G.M. Mahmoud, T. Bountis, Int. J. Bifur. Chaos. 14, 3821 (2004)

    Article  Google Scholar 

  17. 17.

    F. Yang, J. Mou, J. Liu, C.G. Ma, H.Z. Yan, Signal Process. 2019, 107373 (2019)

    Google Scholar 

  18. 18.

    H.J. Liu, Y.Q. Zhang, A. Kadir, Y.Q. Xu, Appl. Math. Comput. 360, 83 (2019)

    MathSciNet  Article  Google Scholar 

  19. 19.

    M.F.A. Rahim, H. Natiq, N.A.A. Fataf, S. Banerjee, Eur. Phys. J. Plus. 134(5), 499 (2019)

    Article  Google Scholar 

  20. 20.

    C.B. Li, J.C. Sprott, Int. J. Bifurcat. Chaos. 23(7), 1350199 (2013)

    Article  Google Scholar 

  21. 21.

    M. Chen, Q. Xu, Y. Lin, B.C. Bao, Nonlinear Dyn. 87(2), 789 (2017)

    Article  Google Scholar 

  22. 22.

    G. Peng, F.H. Min, Nonlinear Dyn. 90(3), 1607 (2017)

    Article  Google Scholar 

  23. 23.

    C.B. Li, J.C. Sprott et al., Int. J. Bifurcat. Chaos. 28(14), 1850163 (2018)

    Article  Google Scholar 

  24. 24.

    C.B. Li, Y. Xu, G.R. Chen et al., Nonlinear Dyn. 95(2), 1245 (2019)

    Article  Google Scholar 

  25. 25.

    S.B. He, K.H. Sun, H. Wang, Entropy. 17(7), 8299 (2015)

    ADS  Article  Google Scholar 

  26. 26.

    F.Z. Nian, X.Y. Wang, Y.Y. Niu, D. Lin, Appl. Math. Comput. 217, 2481 (2010)

    MathSciNet  Google Scholar 

  27. 27.

    G.M. Mahmoud, E.E. Mahmoud, Nonlinear Dyn. 67, 1613 (2012)

    Article  Google Scholar 

  28. 28.

    P. Liu, S.T. Liu, Nonlinear Dyn. 70(1), 58 (2012)

    Google Scholar 

  29. 29.

    E.E. Mahmoud, Math. Comput. Simul. 89, 69 (2013)

    Article  Google Scholar 

  30. 30.

    C. Luo, X.Y. Wang, J. Frankl. Inst. 350, 2646 (2013)

    Article  Google Scholar 

  31. 31.

    J. Liu, S. Liu, J.C. Sprott, Nonlinear Dyn. 79, 1035 (2015)

    Article  Google Scholar 

  32. 32.

    S.T. Liu, F.F. Zhang, Nonlinear Dyn. 12, 1 (2013)

    Google Scholar 

  33. 33.

    J. Liu, S.T. Liu, Appl. Math. Model. 48, 440 (2017)

    MathSciNet  Article  Google Scholar 

  34. 34.

    G.M. Mahmoud, E.E. Mahmoud, A.A. Arafa, Chaos. Soliton. Fract. 111, 86 (2018)

    ADS  Article  Google Scholar 

  35. 35.

    J. Liu, S.T. Liu, J.C. Sprott, Nonlinear Dyn. 83, 1109 (2016)

    Article  Google Scholar 

  36. 36.

    S. Banerjee, P. Saha, A.R. Chowdhury, Phys. Lett. A 291, 2 (2001)

    Article  Google Scholar 

  37. 37.

    S. Banerjee, S. Mukhopadhyay, L. Rondoni, Opt. Lasers Eng. 50, 7 (2012)

    Article  Google Scholar 

  38. 38.

    H.C. Wei, X.C. Zheng, The Matrix Theory in Engineering (China University of Petroleum Press, Dongying, 1999)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (No. 61773010).

Author information

Affiliations

Authors

Contributions

XZ: Data curation; Formal analysis; Writing-original draft, JL: Funding acquisition; Methodology; Supervision; Writing-review & editing, JM: Conceptualization, CM: Software, FY: Validation; Investigation.

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liu, J., Mou, J. et al. Characteristics of a laser system in complex field and its complex self-synchronization. Eur. Phys. J. Plus 135, 507 (2020). https://doi.org/10.1140/epjp/s13360-020-00509-2

Download citation