Nuclear shadowing in DIS at electron-ion colliders

Abstract

We present a revision of predictions for nuclear shadowing in deep-inelastic scattering at small Bjorken \(x_{Bj}\) corresponding to kinematic regions accessible by the future experiments at electron-ion colliders. The nuclear shadowing is treated within the color dipole formalism based on the rigorous Green function technique. This allows incorporating naturally color transparency and coherence length effects, which are not consistently and properly included in present calculations. For the lowest \(|q\bar{q}\rangle \) Fock component of the photon, our calculations are based on an exact numerical solution of the evolution equation for the Green function. Here the magnitude of shadowing is tested using a realistic form for the nuclear density function, as well as various phenomenological models for the dipole cross section. The corresponding variation of the transverse size of the \(q{{\bar{q}}}\) photon fluctuations is important for \(x_{Bj}\gtrsim 10^{-4}\), on the contrary with the most of other models, which use frequently only the eikonal approximation with the “frozen” transverse size. At \(x_{Bj}\lesssim 0.01\), we calculate within the same formalism also a shadowing correction for the higher Fock component of the photon containing gluons. The corresponding magnitudes of gluon shadowing correction are compared adopting different phenomenological dipole models. Our results are tested by available data from the E665 and NMC collaborations. Finally, the magnitude of nuclear shadowing is predicted for various kinematic regions that should be scanned by the future experiments at electron-ion colliders.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    A. Accardi et al., Eur. Phys. J. A 52, 268 (2016)

    ADS  Article  Google Scholar 

  2. 2.

    E.C. Aschenauer et al. arXiv:1409.1633 [physics.acc-ph]

  3. 3.

    E.C. Aschenauer et al. arXiv:1708.01527 [nucl-ex]

  4. 4.

    J.L. Abelleira Fernandez et al., LHeC study group. J. Phys. G 39, 075001 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    J. Nemchik, Phys. Rev. C 68, 035206 (2003)

    ADS  Article  Google Scholar 

  6. 6.

    B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, I. Schmidt, J. Phys. G 35, 115010 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    B.Z. Kopeliovich, B.G. Zakharov, Phys. Rev. D 44, 3466 (1991)

    ADS  Article  Google Scholar 

  8. 8.

    B.Z. Kopeliovich, J. Nemchik, N.N. Nikolaev, B.G. Zakharov, Phys. Lett. B 309, 179 (1993)

    ADS  Article  Google Scholar 

  9. 9.

    B.Z. Kopeliovich, J. Nemchik, N.N. Nikolaev, B.G. Zakharov, Phys. Lett. B 324, 469 (1994)

    ADS  Article  Google Scholar 

  10. 10.

    B.Z. Kopeliovich, J. Nemchik, A. Schafer, A.V. Tarasov, Phys. Rev. C 65, 035201 (2002)

    ADS  Article  Google Scholar 

  11. 11.

    B.Z. Kopeliovich, J. Nemchik, I. Schmidt, Phys. Rev. C 76, 025210 (2007)

    ADS  Article  Google Scholar 

  12. 12.

    B.Z. Kopeliovich, J. Raufeisen, A.V. Tarasov, M.B. Johnson, Phys. Rev. C 67, 014903 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    V.P. Goncalves, M. Krelina, J. Nemchik, R. Pasechnik, Phys. Rev. D 94(11), 114009 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    E. Basso, V.P. Goncalves, M. Krelina, J. Nemchik, R. Pasechnik, Phys. Rev. D 93(9), 094027 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    B.Z. Kopeliovich, J. Nemchik, A. Schafer, A.V. Tarasov, Phys. Rev. Lett. 88, 232303 (2002)

    ADS  Article  Google Scholar 

  16. 16.

    J. Nemchik, V. Petracek, I.K. Potashnikova, M. Sumbera, Phys. Rev. C 78, 025213 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    J.L. Albacete et al., Int. J. Mod. Phys. E 22, 1330007 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    M. Arneodo, Phys. Rept. 240, 301 (1994)

    ADS  Article  Google Scholar 

  19. 19.

    T.H. Bauer, R.D. Spital, D.R. Yennie, F.M. Pipkin, Rev. Mod. Phys. 50, 261 (1978). Erratum: [Rev. Mod. Phys. 51, 407 (1979)]

  20. 20.

    L.L. Frankfurt, M.I. Strikman, Phys. Rept. 160, 235 (1988)

    ADS  Article  Google Scholar 

  21. 21.

    S.J. Brodsky, H.J. Lu, Phys. Rev. Lett. 64, 1342 (1990)

    ADS  Article  Google Scholar 

  22. 22.

    S.J. Brodsky, I. Schmidt, J.J. Yang, Phys. Rev. D 70, 116003 (2004)

    ADS  Article  Google Scholar 

  23. 23.

    N.N. Nikolaev, B.G. Zakharov, Z. Phys. C 49, 607 (1991)

    Article  Google Scholar 

  24. 24.

    W. Melnitchouk, A.W. Thomas, Phys. Lett. B 317, 437 (1993)

    ADS  Article  Google Scholar 

  25. 25.

    N.N. Nikolaev, G. Piller, B.G. Zakharov, J. Exp. Theor. Phys. 81, 851 (1995). [Zh. Eksp. Teor. Fiz. 108, 1554 (1995)]

  26. 26.

    G. Piller, W. Ratzka, W. Weise, Z. Phys. A 352, 427 (1995)

    ADS  Article  Google Scholar 

  27. 27.

    B. Kopeliovich, B. Povh, Phys. Lett. B 367, 329 (1996)

    ADS  Article  Google Scholar 

  28. 28.

    B. Kopeliovich, B. Povh, Z. Phys. A 356, 467 (1997)

    ADS  Article  Google Scholar 

  29. 29.

    G. Piller, W. Weise, Phys. Rept. 330, 1 (2000)

    ADS  Article  Google Scholar 

  30. 30.

    B.Z. Kopeliovich, J. Raufeisen, A.V. Tarasov, Phys. Rev. C 62, 035204 (2000)

    ADS  Article  Google Scholar 

  31. 31.

    O.V. Kancheli, Pisma Zh. Eksp. Teor. Fiz. 18, 465 (1973). [JETP Lett. 18, 274 (1973)]

  32. 32.

    L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rept. 100, 1 (1983)

    ADS  Article  Google Scholar 

  33. 33.

    A.H. Mueller, J.W. Qiu, Nucl. Phys. B 268, 427 (1986)

    ADS  Article  Google Scholar 

  34. 34.

    J.W. Qiu, Nucl. Phys. B 291, 746 (1987)

    ADS  Article  Google Scholar 

  35. 35.

    B.Z. Kopeliovich, A. Schafer, A.V. Tarasov, Phys. Rev. D 62, 054022 (2000)

    ADS  Article  Google Scholar 

  36. 36.

    K.J. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017 (1998)

    ADS  Article  Google Scholar 

  37. 37.

    H. Kowalski, L. Motyka, G. Watt, Phys. Rev. D 74, 074016 (2006)

    ADS  Article  Google Scholar 

  38. 38.

    J. Bartels, K.J. Golec-Biernat, H. Kowalski, Phys. Rev. D 66, 014001 (2002)

    ADS  Article  Google Scholar 

  39. 39.

    A.H. Rezaeian, M. Siddikov, M. Van de Klundert, R. Venugopalan, Phys. Rev. D 87, 034002 (2013)

    ADS  Article  Google Scholar 

  40. 40.

    M. Krelina, J. Nemchik, Zenodo [Data set] (2020). https://doi.org/10.5281/zenodo.3470138

  41. 41.

    B.Z. Kopeliovich, L.I. Lapidus, A.B. Zamolodchikov, JETP Lett. 33, 595 (1981). [Pisma Zh. Eksp. Teor. Fiz. 33, 612 (1981)]

  42. 42.

    G. Bertsch, S.J. Brodsky, A.S. Goldhaber, J.F. Gunion, Phys. Rev. Lett. 47, 297 (1981)

    ADS  Article  Google Scholar 

  43. 43.

    S.J. Brodsky, A.H. Mueller, Phys. Lett. B 206, 685 (1988)

    ADS  Article  Google Scholar 

  44. 44.

    J.B. Kogut, D.E. Soper, Phys. Rev. D 1, 2901 (1970)

    ADS  Article  Google Scholar 

  45. 45.

    J.D. Bjorken, J.B. Kogut, D.E. Soper, Phys. Rev. D 3, 1382 (1971)

    ADS  Article  Google Scholar 

  46. 46.

    H.J. Pirner, N. Nurpeissov, Phys. Lett. B 595, 379 (2004)

    ADS  Article  Google Scholar 

  47. 47.

    H.J. Pirner, B. Galow, O. Schlaudt, Nucl. Phys. A 819, 135 (2009)

    ADS  Article  Google Scholar 

  48. 48.

    J. Raufeisen, A.V. Tarasov, O.O. Voskresenskaya, Eur. Phys. J. A 5, 173 (1999)

    ADS  Article  Google Scholar 

  49. 49.

    H. Vries, C.W. De Jager, C. De Vries, Atom. Data Nucl. Data Tabl. 36, 495 (1987)

    ADS  Article  Google Scholar 

  50. 50.

    B.G. Zakharov, Phys. Atom. Nucl. 61, 838 (1998). [Yad. Fiz. 61, 924 (1998)]

  51. 51.

    B.Z. Kopeliovich, A.V. Tarasov, Nucl. Phys. A 710, 180 (2002)

    ADS  Article  Google Scholar 

  52. 52.

    B.Z. Kopeliovich, Int. J. Mod. Phys. A 31(28n29), 1645021 (2016)

    ADS  Article  Google Scholar 

  53. 53.

    B. Kopeliovich, A. Tarasov, J. Hufner, Nucl. Phys. A 696, 669 (2001)

    ADS  Article  Google Scholar 

  54. 54.

    I. Balitsky, Nucl. Phys. B 463, 99 (1996)

    ADS  Article  Google Scholar 

  55. 55.

    Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999)

    ADS  Article  Google Scholar 

  56. 56.

    M. Guzzi, P. Nadolsky, E. Berger, H.L. Lai, F. Olness, C.-P. Yuan. arXiv:1101.0561 [hep-ph]

  57. 57.

    K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, Eur. Phys. J. C 77(3), 163 (2017)

    ADS  Article  Google Scholar 

  58. 58.

    K. Kovarik et al., Phys. Rev. D 93(8), 085037 (2016)

    ADS  Article  Google Scholar 

  59. 59.

    M.R. Adams et al. [E665 Collaboration], Z. Phys. C 67, 403 (1995)

  60. 60.

    P. Amaudruz et al. [New Muon Collaboration], Nucl. Phys. B 441, 3 (1995)

Download references

Acknowledgements

J.N. work was partially supported by grants LTC17038 and LTT18002 of the Ministry of Education, Youth and Sports of the Czech Republic, by the project of the European Regional Development Fund CZ02.1.01/0.0/0.0/16_019/0000778 and by the Slovak Funding Agency, Grant 2/0007/18. The work of M.K. was supported in part by the CONICYT Postdoctorado N.3180085 (Fondecyt Chile), and by the project Centre of Advanced Applied Sciences with the number: CZ.02.1.01/0.0/0.0/16-019/0000778 (Czech Republic). Project Centre of Advanced Applied Sciences is co-financed by European Union.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Nemchik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krelina, M., Nemchik, J. Nuclear shadowing in DIS at electron-ion colliders. Eur. Phys. J. Plus 135, 444 (2020). https://doi.org/10.1140/epjp/s13360-020-00498-2

Download citation