Transport properties of La0.9Sr0.1MnO3 manganite

Abstract

Impedance spectroscopy technique was used to characterize the electrical properties in a wide range of frequency [40–105 Hz] and temperature [80–700 K]. As a result, AC-conductivity spectrum follows the ‘double Jonscher Power Law’ in the temperature range [80–280 K], ‘Jonscher Power Law’ in [300–600 K] range and at 700 Kit is described by the classical Drude model. Moreover, the AC-conductivity analysis reveals the contribution of multiple mechanisms in conduction. In fact, the variation of the frequency exponent ‘s1’ with temperature shows that the correlated barrier hopping mechanism is the dominated model for conduction of charge carriers beyond T = 470 K. The previous model was observed again according to the temperature dependence of the frequency exponent ‘s2.’ Then, the deduced activation energy decreases with increasing frequency suggesting the availability of hopping conduction. The temperature dependence of AC-conductivity proves the existence of metal semi-conductor transition at 200 K. At high temperatures, the DC-conductivity analysis reveals that the conduction process is dominated by thermally activated hopping of small polaron. However, at low temperatures, it is confirmed that the most suitable mechanism for conduction is the Shklovskii–Efros-Variable Range Hopping process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Z. Shuai, D. Gang, L. Yang, L. Hongjiang, C. Kaili, P. Xingrui, Y. Xiaohan, L. Xiang, Effect of Na-doping on structural, electrical, and magnetoresistive properties of La0.7(Ag0.3-xNax)0.3MnO3 polycrystalline ceramics. Ceram. Int. 46, 584–591 (2020)

    Google Scholar 

  2. 2.

    A.S. Patra, N.V. Kumar, D. Barpuzary, M. De, M. Qureshi, Strontium doped lanthanum manganites for efficient and robust photocatalytic water oxidation coupled with graphene oxide. Mater. Lett. 131, 125–127 (2014)

    Google Scholar 

  3. 3.

    M. Pekala, V. Drozd, Magnetocaloric effect in La0.8Sr0.2MnO3 manganite. J. Alloy. Compd. 456, 30–33 (2008)

    Google Scholar 

  4. 4.

    E.A. Vitol, V. Novosad, E.A. Rozhkova, Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine 7, 1611–1624 (2012)

    Google Scholar 

  5. 5.

    A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys. Rev. B 51, 14103–14109 (1995)

    ADS  Google Scholar 

  6. 6.

    Z. Luo, J. Gao, Rectifying characteristics and magnetoresistance in La0.9Sr0.1MnO3/Nb-doped SrTiO3 heterojunctions. Mater. Sci. Eng. B 144, 109–112 (2007)

    Google Scholar 

  7. 7.

    H. Baaziz, A. Tozri, E. Dhahri, E.K. Hlil, Effect of particle size reduction on the structural, magnetic properties and the spin excitations in ferromagnetic insulator La0.9Sr0.1MnO3 nanoparticles. Ceram. Int. 41, 2955–2962 (2015)

    Google Scholar 

  8. 8.

    B.P. Mc Carthy, R. Larry Pederson, Y.S. Chou, X.-D. Zhou, W.A. Surdoval, L.C. Wilson, Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs. J. Power Sources 180, 294–300 (2008)

    ADS  Google Scholar 

  9. 9.

    W. Juan, Y. Dong, P. Jian, C. Bo, J. Li, The investigation of interaction between La0.9Sr0.1MnO3 cathode and metallic interconnect for solid oxide fuel cell at reduced temperature. J. Power Sources 202, 166–174 (2012)

    Google Scholar 

  10. 10.

    N. AbdelmoulaL, J. Dhahri, K. Guidara, E. Dhahri, J.C. Joubert, The effect of a cation radii on physical properties of doped manganites. Phase Transit. 70, 197–210 (1999)

    Google Scholar 

  11. 11.

    T. Raoufi, M.H. Ehsani, D. Sanavi Khoshnoud, Critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.6Sr0.4MnO3 ceramic: a comparison between sol–gel and solid state process. Ceram. Int. 43, 5204–5215 (2017)

    Google Scholar 

  12. 12.

    H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, Europium substitution for lanthanium in LaBaMnO—The structural and electrical properties of La0.7−xEuxBa0.3MnO3 perovskite. J. Alloy. Compd. 690, 890–895 (2017)

    Google Scholar 

  13. 13.

    H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, Electrical conductivity and complex impedance analysis of 20% Ti-doped La0.7Sr0.3MnO3 perovskite. J. Magn. Magn. Mater. 316, 23–28 (2007)

    ADS  Google Scholar 

  14. 14.

    H. Rahmouni, R. Jemai, M. Nouiri, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, Admittance spectroscopy and complex impedance analysis of Ti-modified La0.7Sr0.3MnO3. J. Cryst. Growth 310, 556–561 (2008)

    ADS  Google Scholar 

  15. 15.

    H. Rahmouni, R. Jemai, N. Kallel, A. Selmi, K. Khirouni, Titanium effects on the transport properties in La0.7Sr0.3Mn1−xTixO3. J. Alloy. Compd. 497, 1–5 (2010)

    Google Scholar 

  16. 16.

    H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, Chromium effects on the transport properties in La0.7Sr0.3Mn1−xCrxO3. J. Alloy. Compd. 533, 93–96 (2012)

    Google Scholar 

  17. 17.

    H. Baaziz, N.K. Maaloul, A. Tozri, H. Rahmouni, S. Mizouri, K. Khirouni, E. Dhahri, Effect of sintering temperature and grain size on the electrical transport properties of La0.67Sr0.33MnO3 manganite. Chem. Phys. Lett. 640, 77–81 (2015)

    ADS  Google Scholar 

  18. 18.

    H. Rahmouni, B. Cherif, M. Baazaoui, K. Khirouni, Effects of iron concentrations on the electrical properties of La0.67Ba0.33Mn1−xFexO3. J. Alloy. Compd. 575, 5–9 (2013)

    Google Scholar 

  19. 19.

    H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5−xAgxMnO3 manganites with the composition below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457–10466 (2015)

    Google Scholar 

  20. 20.

    J. Makni-Chakroun, R. M’nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, Effect of A-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites. Chem. Phys. Lett. 707, 61–70 (2018)

    ADS  Google Scholar 

  21. 21.

    F. Jiyu, X. Yunfei, Z. Yan, Q. Fengjiao, J. Yanda, H. Dazhi, T. Wei, Z. Lei, L. Langsheng, W. Caixia, M. Chunlan, Y. Hao, Emergent phenomena of magnetic skyrmion and large DM interaction in perovskite manganite La0.8Sr0.2MnO3. J. Magn. Magn. Mater. 483, 42–47 (2019)

    Google Scholar 

  22. 22.

    L. Conceição, C.R.B. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, Solid-state synthesis of La0.7Sr0.3MnO3 powders using different grinding times. ECS Trans. 25, 2301–2308 (2009)

    Google Scholar 

  23. 23.

    C. Karima, B. Arwa, J. Dhahri, Impedance studies of La0.6Gd0.1Sr0.3Mn0.9In0.1O3 manganite prepared by the sol–gel method. J. Alloy. Compd. 777, 358–363 (2019)

    Google Scholar 

  24. 24.

    D. Grossin, J.G. Noudem, Synthesis of fine La0.8Sr0.2MnO3 powder by different ways. Solid State Sci. 6, 939–944 (2004)

    ADS  Google Scholar 

  25. 25.

    W. Minghua, W. Kee-Do, L. Choong-Gon, Preparing La0.8Sr0.2MnO3 conductive perovskite via optimal processes: high-energy ball milling and calcinations. Energy Convers. Manag. 52, 1589–1592 (2011)

    Google Scholar 

  26. 26.

    Q. Fen, R. Hee-Suk, C. Salim, L. Seongha, K. Sun-Dong, W. Sang Kook, L. Jung-Kun, Enhancement of grain growth and electrical conductivity of La0.8Sr0.2MnO3 ceramics by microwave irradiation. J. Eur. Ceram. Soc. 39, 1854–1859 (2019)

    Google Scholar 

  27. 27.

    Y. Rong-hua, H. Yun, H. Wei, N. Meng, K.H. Michael Leung, La0.8Sr0.2MnO3 based perovskite with A-site deficiencies as high performance bifunctional electrocatalyst for oxygen reduction and evolution reaction in alkaline. Energy Procedia 158, 5804–5810 (2019)

    Google Scholar 

  28. 28.

    S.V. Seyed-Vakili, A. Babaei, M. Ataie, S. Heshmati-Manesh, H. Abdizadeh, Enhanced performance of La0.8Sr0.2MnO3 cathode for solid oxide fuel cells by co-infiltration of metal and ceramic precursors. J. Alloy. Compd. 737, 433–441 (2018)

    Google Scholar 

  29. 29.

    Y. Regaieg, G. Delaizir, F. Herbst, L. Sicard, J. Monnier, D. Montero, B. Villeroy, S. Ammar-Merah, A. Cheikhrouhou, C. Godart, M. Koubaa, Rapid solid state synthesis by spark plasma sintering and magnetic properties of LaMnO3 perovskite manganite. Mater. Lett. 80, 195–198 (2012)

    Google Scholar 

  30. 30.

    C. Zener, Interaction between the d-Shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    ADS  Google Scholar 

  31. 31.

    P.G. de Gennes, Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141–154 (1960)

    ADS  Google Scholar 

  32. 32.

    J.A.M. Van Roosmalan, J.P.P. Huijsmans, L. Plomp, Electrical conductivity in La1−xSrxMnO3+δ. Solid State Ionics 66, 279–284 (1993)

    Google Scholar 

  33. 33.

    A. Anane, C. Dupas, K. Le Dang, J.P. Renard, P. Veillet, A.M. de Leon Guevara, F. Millot, L. Pinsardi, A. Revcolevschi, Transport properties and magnetic behaviour of Lal−xSrxMnO3 single crystals. J. Phys. Condens. Matter 7, 7015–7021 (1995)

    ADS  Google Scholar 

  34. 34.

    Genchu Tang, Yu. Yun, Wei Chen, Yunzhen Cao, The electrical resistivity and thermal infrared properties of La1−xSrxMnO3 compounds. J. Alloys Compd. 461, 486–489 (2008)

    Google Scholar 

  35. 35.

    Y. Li, H. Zhang, X. Liu, Q. Chen, Q. Chen, Electrical and magnetic properties of La1−xSrxMnO3 (0.1 ≤ x ≤ 0.25) ceramics prepared by sol–gel technique. Ceram. Int. 45, 16323–16330 (2019)

    Google Scholar 

  36. 36.

    M. Pajot, V. Duffort, E. Capoen, A.-S. Mamede, R.-N. Vannier, Influence of the strontium content on the performance of La1−xSrxMnO3/Bi1.5Er0.5O3 composite electrodes for low temperature solid oxide fuel cells. J. Power Sources 450, 227–649 (2020)

    Google Scholar 

  37. 37.

    H. Rahmouni, B. Cherif, K. Khirouni, M. Baazaoui, S. Zemni, Influence of polarization and iron content on the transport properties of praseodymium–barium manganite. J. Phys. Chem. Solids 88, 35–40 (2016)

    ADS  Google Scholar 

  38. 38.

    Y. Moualhi, Nofal M. Muaffaq, R. Mnassri, H. Rahmouni, A. Selmi, M. Gassoumi, K. Khirouni, A. Cheikrouhou, Double Jonscher response and contribution of multiple mechanisms in electrical conductivity processes of Fe–PrCaMnO ceramic. Ceram. Int. 46, 1601–1608 (2020)

    Google Scholar 

  39. 39.

    A. Arif Khan, M. Umer Fayaz, M. Nasir Khan, M. Iqbal, A. Majeed, R. Bilkees, S. Mukhtar, M. Javed, Investigation of charge transport mechanism in semiconducting La0.5Ca0.5Mn0.5Fe0.5O3 manganite prepared by sol–gel method. J. Mater. Sci. Mater. Electron. 29, 13577–13587 (2018)

    Google Scholar 

  40. 40.

    P. Bruce, High and low frequency Jonscher behavior of an ionically conducting glass. Solid State Ion. 15, 247–251 (1985)

    Google Scholar 

  41. 41.

    A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    ADS  Google Scholar 

  42. 42.

    S.R. Elliott, F.E.G. Henn, Application of the anderson-stuart model to the AC conduction of ionically conducting materials. J. Non-Cryst. Solids 116, 179–190 (1990)

    ADS  Google Scholar 

  43. 43.

    K. Maan Sangwan, N. Ahlawat, S. Rani, S. Rani, R.S. Kundu, Influence of Mn doping on electrical conductivity of lead free BaZrTiO3 perovskite ceramic. Ceram. Int. 44, 10315–10321 (2018)

    Google Scholar 

  44. 44.

    G.E. Pike, AC Conductivity of scandium oxide and a new hopping model for conductivity. Phys. Rev. B 6, 1572–1580 (1972)

    ADS  Google Scholar 

  45. 45.

    A.K. Jonscher, M.S. Frost, Weakly frequency-dependent electrical conductivity in a chalcogenide glass. Thin Solid Films 37, 267–273 (1976)

    ADS  Google Scholar 

  46. 46.

    A.S. Nowick, B.S. Lim, Analysis of ac conductivity data for Na2O3SiO2 glass by stretched exponential and Jonscher power-law methods. J. Non-Crystal. Solids 172, 1389–1394 (1994)

    ADS  Google Scholar 

  47. 47.

    K. Lee, S. Cho, S. Heum Park, A.J. Heeger, C.-W. Lee, S.-H. Lee, Metallic transport in polyaniline. Nature 441, 65–68 (2006)

    ADS  Google Scholar 

  48. 48.

    A. Ghosh, A. Pan, Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys. Rev. Lett. 84, 2188 (2000)

    ADS  Google Scholar 

  49. 49.

    N.F. Mott, Conduction in non-crystalline materials. Philos. Mag. 19(160), 835 (1969)

    ADS  Google Scholar 

  50. 50.

    I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18(71), 41 (1969)

    ADS  Google Scholar 

  51. 51.

    B. Cherif, H. Rahmouni, M. Smari, E. Dhahri, N. Moutia, K. Khirouni, Transport properties of silver–calcium doped lanthanum manganite. Phys. B 457, 240–244 (2015)

    ADS  Google Scholar 

  52. 52.

    A. Ghosh, Transport properties of vanadium germanate glassy semiconductors. Phys. Rev. B 42, 5665–5676 (1990)

    ADS  Google Scholar 

  53. 53.

    A. Ghosh, Frequency-dependent conductivity in bismuth-vanadate glassy semi-conductors. Phys. Rev. B 41, 1479–1488 (1990)

    ADS  Google Scholar 

  54. 54.

    S. Elliott, AC conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    ADS  Google Scholar 

  55. 55.

    K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    Google Scholar 

  56. 56.

    N.F. Mott, E.A. Davis, Electronic process in non crystalline materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  57. 57.

    S. Shaheen Shah, K. Hayat, S. Ali, K. Rasool, Y. Iqbal, Conduction mechanisms in lanthanum manganite nanofibers. Mater. Sci. Semicond. Process. 90, 65–71 (2019)

    Google Scholar 

  58. 58.

    T.F. Khoon, J. Hassan, Z.A. Wahab, R. Syahidah Azis, Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method. Eng. Sci. Technol. 19, 2081–2087 (2016)

    Google Scholar 

  59. 59.

    M. Sassi, A. Bettaibi, A. Oueslati, K. Khirouni, M. Gargouri, Electrical conduction mechanism and transport properties of LiCrP2O7 compound. J. Alloy. Compd. 649, 642–648 (2015)

    Google Scholar 

  60. 60.

    S.A. Mansour, I.S. Yahia, F. Yakuphanoglu, The electrical conductivity and dielectric properties of C.I. Basic Violet 10. Dyes Pigm. 87, 144–148 (2010)

    Google Scholar 

  61. 61.

    R. Laiho, K.G. Lisunov, E. Lähderanta, V.N. Stamov, V.S. Zakhvalinskii, Variable-range hopping conductivity in La1−xCaxMnO3. J. Phys. Condens. Matter 13, 1233–1246 (2001)

    ADS  Google Scholar 

  62. 62.

    A.L. Efros, B.I. Shklovskii, Coulomb interaction in disordered systems with localized electronic states. Mod. Probl. Condens. Matter Sci. 10, 409–482 (1985)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Rahmouni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hizi, W., Rahmouni, H., Gassoumi, M. et al. Transport properties of La0.9Sr0.1MnO3 manganite. Eur. Phys. J. Plus 135, 456 (2020). https://doi.org/10.1140/epjp/s13360-020-00492-8

Download citation