Abstract
We demonstrate the existence of localized states in close vicinity of a linear defect in graphene. These states have insulating or conducting character. Insulating states form a flat band, while conducting states present a slowdown of the group velocity which is not originated by many-body interactions and it is controlled by the interface properties. For appropriate boundary conditions, the conducting states exhibit momentum-valley locking and protection from backscattering effects. These findings provide a contribution to the recent discussion on the origin of correlated phases in graphene.
This is a preview of subscription content, access via your institution.

Notes
- 1.
Throughout this work, symbols \( {\mathbb{I}} \) and \( \sigma_{x,y,z} \) are used to indicate the \( 2 \times 2 \) identity matrix and the Pauli matrices, respectively. The symbol \( \otimes \) is used to indicate the Kronecker product of matrices. The notation \( p_{x} = - i\hbar \partial_{x} \) and \( p_{y} = - i\hbar \partial_{y} \) is introduced for quantum operators associated with the linear momentum components. Complex conjugation operator is denoted by \( {\mathcal{K}} \), while \( A^{t} \) denotes the transpose of \( A \).
References
- 1.
R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)
- 2.
E. Fermi, J. Pasta, S. Ulam, Studies of Non Linear Problems, Los-Alamos internal report, document LA-1940 (1955)
- 3.
A. Ekert, R. Jozsa, Rev. Mod. Phys. 68(3), 733 (1996)
- 4.
V.S. Denchev, S. Boixo, S.V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis, H. Neven, Phys. Rev. X 6, 031015 (2016)
- 5.
S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)
- 6.
M. Polini, F. Guinea, M. Lewenstein, H.C. Manoharan, V. Pellegrini, Nat. Nanotechnol. 8, 625 (2013)
- 7.
P.E. Allain, J.N. Fuchs, Eur. Phys. J. B 83, 301 (2011)
- 8.
T.M. Rusin, W. Zawadzki, Phys. Rev. B 78, 125419 (2008)
- 9.
F.V. Tikhonenko, A.A. Kozikov, A.K. Savchenko, R.V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009)
- 10.
P.M. Ostrovsky, I.V. Gornyi, A.D. Mirlin, Phys. Rev. B 77, 195430 (2008)
- 11.
V.V. Cheianov, V. Fal’ko, B.L. Altshuler, Science 315, 1252 (2007)
- 12.
Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, P. Jarillo-Herrero, Nature 556, 80 (2018)
- 13.
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 556, 43 (2018)
- 14.
G. Chen, A.L. Sharpe, P. Gallagher, I.T. Rosen, E.J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, F. Wang, Nature (2019). https://doi.org/10.1038/s41586-019-1393-y
- 15.
G. Tarnopolsky, A.J. Kruchkov, A. Vishwanath, Phys. Rev. Lett. 122, 106405 (2019)
- 16.
A. Luican-Mayer, J.E. Barrios-Vargas, J.T. Falkenberg, G. Auts, A.W. Cummings, D. Soriano, G. Li, M. Brandbyge, O.V. Yazyev, S. Roche, E.Y. Andrei, 2D Materials 3, 031005 (2016)
- 17.
T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004)
- 18.
H. Suzuura, T. Ando, Phys. Rev. Lett. 89, 266603 (2002)
- 19.
F. Romeo, A. Di Bartolomeo, Materials 11, 1660 (2018)
- 20.
C.W.J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006)
- 21.
J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, Nat. Nanotechnol. 5, 326 (2010)
- 22.
T. Ochiai, M. Onoda, Phys. Rev. B 80, 155103 (2009)
- 23.
Daniel Torrent, José Sánchez-Dehesa, Phys. Rev. Lett. 108, 174301 (2012)
- 24.
Penglin Gao, Daniel Torrent, Francisco Cervera, Pablo San-Jose, José Sánchez-Dehesa, Johan Christensen, Phys. Rev. Lett. 123, 196601 (2019)
- 25.
Xin Li, Yan Meng, Wu Xiaoxiao, Sheng Yan, Yingzhou Huang, Shuxia Wang, Weijia Wen, Appl. Phys. Lett. 113, 203501 (2018)
Acknowledgements
Discussions with R. De Luca and M. Salerno are gratefully acknowledged. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Romeo, F. Conduction properties of extended defect states in Dirac materials. Eur. Phys. J. Plus 135, 446 (2020). https://doi.org/10.1140/epjp/s13360-020-00491-9
Received:
Accepted:
Published: