On the position-dependent effective mass Hamiltonian

Abstract

Noncommutativity of position and momentum makes it difficult to formulate the unambiguous structure of the kinetic part of Hamiltonian for the position-dependent effective mass (PDEM). Various existing proposals of writing the viable kinetic part of the Hamiltonian for PDEM conceptually lack from first principle calculation. Starting from the first principle calculation, in this article, we have advocated the proper self-adjoint form of the kinetic part of Hamiltonian for PDEM. We have proposed that ambiguity of construction of viable kinetic part for PDEM can be avoided if one takes the care from the classical-level combination of position and momentum. In the quantum level, the spatial points do not appear in equivalent footing for the measure of inertia (mass). This exhibits the existence of an inertia potential. Thus, the new structure of the kinetic part differs from the existing structure of the kinetic part of Hamiltonian by providing an extra potential like contribution. This inertia potential can be absorbed with the external potential, and the known structure of PDEM can be redefined under this effective potential. This enables us to apply the existing formalism of quantum mechanics. The coherent state structures for the newly proposed form of Hamiltonian are provided for a few simple experimentally important models.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R.N. Costa Filho, M.P. Almeida, G.A. Farias, J.S. Andrade Jr., Phys. Rev. A 84, 050102(R) (2011)

    ADS  Article  Google Scholar 

  2. 2.

    S.H. Mazharimousavi, Phys. Rev. A 85, 034102 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    A. de Souza Dutra, C.A.S. Almeida, Phys. Lett. A 275, 25 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    A. de Souza Dutra, J. Phys. A 39, 203 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    A. Schmidt, Phys. Lett. A 353, 459 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    M.S. Abdalla, H. Eleuch, AIP Adv. 6, 055011 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    P.K. Jha, H. Eleuch, Y.V. Rostovtsev, J. Mod. Optic. 58, 652 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    H. Eleuch, P.K. Jha, Y.V. Rostovtsev, Math. Sci. Lett. 1, 1 (2012)

    Article  Google Scholar 

  9. 9.

    A. Brezini, M. Sebbani, Phys. Stat. Sol. b 178, 141 (1993)

    ADS  Article  Google Scholar 

  10. 10.

    R.A. Morrow, Phys. Rev. B 35, 8074 (1987)

    ADS  Article  Google Scholar 

  11. 11.

    M.G. Silveirinha, N. Engheta, Phys. Rev. B 86, 161104(R) (2012)

    ADS  Article  Google Scholar 

  12. 12.

    J. Yu, S.H. Dong, Phys. Lett. A 325, 194 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    M.L. Cassou, S.H. Dong, J. Yu, Phys. Lett. A 331, 45 (2004)

    ADS  Article  Google Scholar 

  14. 14.

    F.A. de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Phys. Rev. B 50, 4248 (1994)

    ADS  Article  Google Scholar 

  15. 15.

    J.P.G. Nascimento, I. Guedes, Rev. Bras. Ens. Fs. 36, 4308 (2014)

    Google Scholar 

  16. 16.

    E.R.F. Medeiros, E.R.B. de Mello, Eur. Phys. J. C 72, 2051 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    L.C.N. Santos, C.C. Barros Jr., Eur. Phys. J. C 78, 13 (2018)

    ADS  Article  Google Scholar 

  18. 18.

    A.L.C. de Oliveira, E.R.B. de Mello, Class. Quantum Grav. 23, 5249 (2006)

    ADS  Article  Google Scholar 

  19. 19.

    M.S. Cunha, C.R. Muniz, H.R. Christiansen, V.B. Bezerra, Eur. Phys. J. C 76, 512 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    K. Bakke, H. Belich, Ann. Phys. 360, 596 (2015)

    Article  Google Scholar 

  21. 21.

    R.L.L. Vitória, H. Belich, K. Bakke, Adv. High Energy Phys. 2017, 6893084 (2017)

    Article  Google Scholar 

  22. 22.

    R.L.L. Vitória, H. Belich, Adv. High Energy Phys. 2019, 1248393 (2019)

    Google Scholar 

  23. 23.

    K. Bakke, C. Furtado, Ann. Phys. 355, 48 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    H. Hassanabadi, W.S. Chung, S. Zare, M. Alimohammadi, Eur. Phys. J. Plus 132, 135 (2017)

    Article  Google Scholar 

  25. 25.

    K. Li, K. Guo, X. Jiang, M. Hu, Optik 132, 375 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    Q. Zhao, S. Aqiqi, J.F. You, M. Kria, K.X. Guo, E. Feddi, Z.H. Zhang, J.H. Yuan, Physica E 115, 113707 (2020)

    Article  Google Scholar 

  27. 27.

    S. Zapperi, C. Castellano, F. Colaiori, G. Durin, Nat. Phys. 1, 46–49 (2005)

    Article  Google Scholar 

  28. 28.

    D. Denisov, K. Lőrincz, W. Wright et al., Sci. Rep. 7, 43376 (2017)

    ADS  Article  Google Scholar 

  29. 29.

    F.A. Serrano, B.J. Falaye, S.H. Dong, Physica A 446, 152 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    C.A. Onate, O. Adebimpe, A.F. Lukman, I.J. Adama, E.O. Davids, K.O. Dopamu, Results Phys. 11, 1094 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    G.H. Sun, D. Popov, O.C. Nieto, S.H. Dong, Chin. Phys. B 24, 100303 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    B.G. da Costa, I.S. Gomez, Physica A: Stat. Mech. Appl. 541, 123698 (2020)

    Article  Google Scholar 

  33. 33.

    B.J. Falaye, F.A. Serrano, S.H. Dong, Phys. Lett. A 380, 267 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    G.Y. Navarro, G.H. Sun, T. Dytrych, K.D. Launey, S.H. Dong, J.P. Draayer, Ann. Phys. 348, 153 (2014)

    ADS  Article  Google Scholar 

  35. 35.

    B. Remaud, E. Hernandez, J. Phys. A: Math. Gen. 13, 2013 (1980)

    ADS  Article  Google Scholar 

  36. 36.

    J.R. Choi, J. Phys.: Condens. Matter 15, 823 (2003)

    ADS  Google Scholar 

  37. 37.

    M. Lai, X. Pan, Sci. Rep. 6, 35412 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    Y.B. Aryeh, arXiv:0807.4670 [gr-qc] (2008)

  39. 39.

    A.S. Halberg, Open Phys. 3, 591–609 (2005)

    ADS  Google Scholar 

  40. 40.

    D. Carney, W. Fischler, S. Paban, N. Sivanandam, J. Cosmol. Astropart. Phys. 12, 012 (2012)

    ADS  Article  Google Scholar 

  41. 41.

    J.R. Choi, S. Menouar, S. Medjber, H. Bekkar, J. Phys. Commun. 1, 052001 (2017)

    Article  Google Scholar 

  42. 42.

    G. Bastard, Wave mechanics applied to semiconductor heterostructures Wiley-Interscience; 1 edition), ISBN-13: 978-0470217085 (1991)

  43. 43.

    J. Yu, S.H. Dong, G.H. Sun, Phys. Lett. A 322, 290 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    Y. Redjati, K. Berkane, K. Bencheikh, J. Phys. Chem. Solids 134, 313 (2019)

    ADS  Article  Google Scholar 

  45. 45.

    S.M. Ikhdair, B.J. Falaye, Chem. Phys. 421, 84 (2013)

    Article  Google Scholar 

  46. 46.

    E.V.B. Leite, R.L.L. Vitória, H. Belich, Mod. Phys. Lett. A 34, 1950319 (2019)

    ADS  Article  Google Scholar 

  47. 47.

    S. Miraboutalebi, J. Theor. Appl. Phys. 10, 323 (2016)

    ADS  Article  Google Scholar 

  48. 48.

    S. Zare, H. Hassanabadi, Adv. High Energy Phys. 2016, 4717012 (2016)

    Article  Google Scholar 

  49. 49.

    S. Dong, G.H. Sun, B.J. Falaye, S.H. Dong, Eur. Phys. J. Plus 131, 176 (2016)

    Article  Google Scholar 

  50. 50.

    V.C. Ruby, M. Senthilvelan, J. Math. Phys. 51, 052106 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  51. 51.

    M. Molski, J. Phys. A: Math. Theor. 42, 165301 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    D.J. Fernández, V. Hussin, O.R. Ortiz, J. Phys. A: Math. Gen. 40, 6491 (2007)

    ADS  Article  Google Scholar 

  53. 53.

    N. Chamel, Nucl. Phys. A. 773, 263 (2006)

    ADS  Article  Google Scholar 

  54. 54.

    B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury, Czech. J. Phys. 54, 1019 (2004)

    ADS  Article  Google Scholar 

  55. 55.

    C. Quesne, Ann. Phys. (N.Y.) 321, 1221 (2006)

    ADS  Article  Google Scholar 

  56. 56.

    B. Roy, P. Roy, J. Phys. A: Math. Gen. 35, 3961 (2002)

    ADS  Article  Google Scholar 

  57. 57.

    C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 37, 4267 (2004)

    ADS  Article  Google Scholar 

  58. 58.

    A.A. Suzko, A.S. Halberg, Phys. Lett. A 372, 5865 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  59. 59.

    A. Biswas, B. Roy, Mod. Phys. Lett. A 24, 1343 (2009)

    ADS  Article  Google Scholar 

  60. 60.

    R. Koc, H. Tütüncüler, Ann. Phys. 12, 684 (2003)

    MathSciNet  Article  Google Scholar 

  61. 61.

    C. Quesne, B. Bagchi, A. Banerjee, V.M. Tkachuk, Bulg. J. Phys. 33, 308 (2006)

    MathSciNet  Google Scholar 

  62. 62.

    S.H. Dong, J.J. Peña, C.P. García, J.G. Ravelo, Mod. Phys. Lett. A 22, 1039 (2007)

    ADS  Article  Google Scholar 

  63. 63.

    S. Karthiga, V.C. Ruby, M. Senthilvelan, Phys. Lett. A 382, 1645 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  64. 64.

    M.I.E. Delgado, D.J. Fernández, Eur. Phys. J. Plus 134, 341 (2019)

    Article  Google Scholar 

  65. 65.

    F. Gantmacher, Lectures in analytical mechanics, Mir Publishers, pp. 66–71 (1975)

  66. 66.

    V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin, 2nd Edition, eBook ISBN 978-1-4757-1693-1, Pages 75-97 (1978)

  67. 67.

    Y. Pala, M.O. Ertas, Int. J. Math. Comput. Sci. 11(3), 125–130 (2017)

    Google Scholar 

  68. 68.

    T. Harko, F.S.N. Lobo, M.K. Mak, Univ. J. Appl. Math. 2, 109–118 (2014)

    Google Scholar 

  69. 69.

    M.K. Mak, T. Harko, Appl. Math. Comput. 218, 10974–10981 (2012)

    MathSciNet  Google Scholar 

  70. 70.

    C. Mortici, Gen. Math. 16(1), 111–116 (2008)

    MathSciNet  Google Scholar 

  71. 71.

    I. Sugai, Am. Math. Month. 67(2), 134–139 (1960)

    MathSciNet  Article  Google Scholar 

  72. 72.

    V.K. Oikonomou, Class. Quantum Grav. 31, 025018 (2014)

    ADS  Article  Google Scholar 

  73. 73.

    R. de C. d Anjos, E.D. Filho, R.M. Ricotta, Phys. Scr. 76, 689 (2007)

  74. 74.

    F. Polotto, M.T. Araujo, E.D. Filho, J. Phys. A: Math. Theor. 43, 015207 (2010)

    ADS  Article  Google Scholar 

  75. 75.

    H. Akcay, R. Sever, Phys. Scr. 89, 015003 (2014)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the anonymous referee for fruitful suggestions which were helpful to make this article in the present form.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pinaki Patra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswas, K., Saha, J.P. & Patra, P. On the position-dependent effective mass Hamiltonian . Eur. Phys. J. Plus 135, 457 (2020). https://doi.org/10.1140/epjp/s13360-020-00476-8

Download citation