Skip to main content
Log in

Radiological protection requirements with regard to cosmic ray exposure during air travel

  • Technical Report
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 12 April 2021

This article has been updated

Abstract

Cosmic radiation in aviation has been a subject of real concern for decades, and measurements have been performed by many governments, airlines companies, and scientists for several years. In addition, the International Commission on Radiological Protection (ICRP) reports on cosmic radiation in aviation provided updated guidance on how to view and to protect the exposure of aircraft crew and astronauts to cosmic rays and highlighted some tools that can be used to assess the dose received during air travel. Still, human activities in the space or at high altitude grow continuously, and exposure to cosmic radiation then remains a concern of international community. Evaluation of effective dose received during air travel for some selected routes confirmed that transpolar routes are the most exposed to cosmic radiations and the dose received by frequent flyers can easily reach 10 mSv (per 700 h flying time per year). By analyzing the obtained data, it was clearly evidenced that the most effective options to reduce exposure from cosmic radiation include a management system of flights where no fixed route is set for aircraft crew, a solution that had not been published before, and the adjustment of flight rosters by controlling the dose of aircraft crew in comparison with the reference level. It was also clear as the outcome of the present study that the duration of the flight, the corresponding dose from cosmic rays, and an excess risk of radiation-related cancers are independent functions as it has been demonstrated from the available epidemiological data. It is therefore recommended to disseminate information about cosmic radiation in order to favor informed decision making by all concerned stakeholders including aircraft crew, frequent (for personal reason or professional duties), and occasional flyers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

Notes

  1. Reference.

References

  1. O. Adriani et al., Direct measurement of the cosmic-ray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station. Phys. Rev. Lett. (2019). https://doi.org/10.1103/physrevlett.122.181102

    Article  Google Scholar 

  2. O. Adriani et al., Extended measurement of the cosmic-ray electron and positron spectrum from 11 GeV to 4.8 TeV with the calorimetric electron telescope on the international space station. Phys. Rev. Lett. (2018). https://doi.org/10.1103/physrevlett.120.261102

    Article  Google Scholar 

  3. S. Andresz, P. Crouail, Results of the EAN request on the radiological protection of aircrew. European ALARA Newsletter nº36 (2015), www.eu-alara.net. Accessed 12 Dec 2018

  4. D.T. Bartlett, Radiation protection aspects of the cosmic radiation exposure of aircraft crew. Radiat. Prot. Dosim. 109, 349–355 (2004). https://doi.org/10.1093/rpd/nch311

    Article  Google Scholar 

  5. Battistoni G, Ferrari A, Pelliccioni M, Villari R (2005) Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv Sp Res. https://doi.org/10.1016/j.asr.2005.04.037

  6. G.A. Bazilevskaya, I.G. Usoskin, E.O. Fluckiger et al., Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149–173 (2008)

    ADS  Google Scholar 

  7. P. Beck, D.T. Bartlett, P. Bilski, C. Dyer, E. Flu, N. Fuller, P. Lantos, G. Reitz, F. Spurny, G. Taylor, F. Trompier, F. Wissmann, Radiation safety, applications division, health protection agency, space division, Paris-meudon Observatoire, Helmholzentrum Mu, Hampton Road, and Physikalisch-technische Bundesanstalt. Alidation Model. Radiat. Expo. 131(1), 51–58 (2008)

    Google Scholar 

  8. P. Beck, D.T. Bartlett, P. Bilski, C. Dyer, E. Flückiger, N. Fuller, P. Lantos, G. Reitz, W. Rühm, F. Spurny, G. Taylor, F. Trompier, F. Wissmann, Validation of modelling the radiation exposure due to solar particle events at aircraft altitudes, in Radiation Protection Dosimetry (2008)

  9. M. Blettner, T. Boehm, J.-F. Bottollier-Depois, I. Clairand, F. Eberbach, G. Frasch, G.P. Hammer, C. Huet, V. Mares, W. Ruehm, H. Voelkle, Strahlenexposition Beim Fliegen—Ein Fall Fuer Den Strahlenschutz. Strahlenschutzpraxis (2014)

  10. J.F. Bottollier-Depois, P. Beck, B. Bennett, L. Bennett, R. Butikofer, I. Clairand, L. Desorgher, C. Dyer, E. Felsberger, E. Fluckiger, A. Hands, P. Kindl, M. Latocha, B. Lewis, G. Leuthold, T. Maczka, V. Mares, M.J. McCall, K. O’Brien, S. Rollet, W. Ruhm, F. Wissmann, Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew. Radiat. Prot. Dosim. 136, 317–323 (2009). https://doi.org/10.1093/rpd/ncp159

    Article  Google Scholar 

  11. J.F. Bottollier-Depois, A. Biau, P. Blanchard, I. Clairand, P. Dessarps, P. Lantos, D. Saint-Lô, M. Valero, Assessing exposure to cosmic radiation aboard aircraft: the SIEVERT system. Radioprotection 38, 357–366 (2003). https://doi.org/10.1051/radiopro:2003013

    Article  Google Scholar 

  12. J.F. Bottollier-Depois, P. Blanchard, I. Clairand, P. Dessarps, N. Fuller, P. Lantos, D. Saint-Lo, F. Trompier, An operational approach for aircraft crew dosimetry: the SIEVERT system. Radiat. Prot. Dosim. 125, 421–424 (2006). https://doi.org/10.1093/rpd/ncl555

    Article  Google Scholar 

  13. J.F. Bottollier-Depois, F. Trompier, I. Clairand, F. Spurny, D. Bartlett, P. Beck, B. Lewis, L. Lindborg, D. O’Sullivan, H. Roos, L. Tommasino, Exposure of aircraft crew to cosmic radiation: on-board intercomparison of various dosemeters. Radiat. Prot. Dosim. 110, 411–415 (2004). https://doi.org/10.1093/rpd/nch217

    Article  Google Scholar 

  14. R. Butikofer, E. Fluckiger, L. Desorgher, M. Moser, The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude. Sci. Total Environ. 391(2–3), 177–183 (2008)

    ADS  Google Scholar 

  15. A. Cheminet, G. Hubert, V. Lacoste, D. Boscher, Measurements and Monte Carlo simulations of the spectral variations of the cosmic-ray-induced neutrons at the Pic Du Midi over a 2-y period. Radiat. Prot. Dosim. 161, 284–289 (2014)

    Google Scholar 

  16. I. Clairand, N. Fuller, J.F. Bottollier-Depois, F. Trompier, The SIEVERT system for aircrew dosimetry. Radiat. Prot. Dosim. 136, 282–285 (2009). https://doi.org/10.1093/rpd/ncp123

    Article  Google Scholar 

  17. F.A. Cucinotta, W. Schimmerling, J.W. Wilson, L.E. Peterson, P.B. Saganti, J.F. Dicello, Uncertainties in estimates of the risks of late effects from space radiation. Adv. Space Res. 34(6), 1383–1389 (2004)

    ADS  Google Scholar 

  18. T.P. Dachev, Y.N. Matviichuk, J.V. Semkova, R.T. Koleva, B. Boichev, P. Baynov, N.A. Kanchev, P. Lakov, Y.J. Ivanov, P.T. Tomo, V.M. Petrov, V.I. Redko, V.I. Kojarinov, R. Tykva, Space radiation dosimetry with active detections for the scientific program of the second Bulgarian cosmonaut on board the MIR space station. Adv. Space Res. 9, 247–251 (1989). https://doi.org/10.1016/0273-1177(89)90445-6

    Article  ADS  Google Scholar 

  19. G. Desmaris, Cosmic radiation in aviation: radiological protection of Air France aircraft crew. Ann. ICRP 45, 64–74 (2016). https://doi.org/10.1177/0146645316636009

    Article  Google Scholar 

  20. L. Dorman, Cosmic Rays in the Earth’s Atmosphere and Underground (Kluwer Academic Publishers, Netherlands, 2004), ISBN 1402020716

  21. DOT/FAA/AM-92/2, Radiation Exposure of Air Carrier Crewmembers 2, n.d. 19 (1992)

  22. C. Dyer, F. Lei, Monte Carlo calculations of the influence on aircraft radiation environments of structures and solar particle events. IEEE Trans. Nuclear Sci. 48, 1987–1995 (2001). https://doi.org/10.1109/23.983161

    Article  ADS  Google Scholar 

  23. EC, Radiation Protection 140, Cosmic Radiation Exposure of Aircraft Crew—Compilation of Measured and Calculated Data (European Radiation Dosimetry Group (EURADOS), Braunschweig, 2004)

    Google Scholar 

  24. EC, Radiation Protection N° 173, Comparison of Codes Assessing Radiation Exposure of Aircraft Crew due to Galactic Cosmic Radiation (Publications Office of the European Union, Luxembourg, 2012)

    Google Scholar 

  25. EURADOS, EURADOS Report 2012–03. Comparison of Codes Assessing Radiation Exposure of Aircraft Crew due to Galactic Cosmic Radiation (European Radiation Dosimetry Group, Braunschweig, 2012)

    Google Scholar 

  26. A. Ferrari, M. Pelliccioni, T. Rancati, Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure. Radiat. Prot. Dosim. 93, 101–114 (2001)

    Google Scholar 

  27. G. Frasch, L. Kammerer, R. Karofsky, A. Schlosser, J. Spiesl, R. Stegemann, Die berufliche Strahlenexposition des fliegenden Personals in Deutschland 2004–2009. BfS-SG-15/11 (Salzgitter, Bundesamt fur Strahelneschutz, 2011), p. 42

    Google Scholar 

  28. G. Frasch, L. Kammerer, R. Karofsky, A. Schlosser, R. Stegemann, Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors. Health Phys. 107, 542–554 (2014)

    Google Scholar 

  29. P. Goldhagen, M. Reginatto, T. Kniss, J.W. Wilson, R.C. Singleterry, I.W. Jones, Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane. Nuclear Instrum. Methods Phys. Res., Sect. A: Accel., Spectrom. Detect. Assoc. Equip. 476, 42–51 (2002)

    ADS  Google Scholar 

  30. M. Hajek, T. Berger, W. Schöner, N. Vana, Analysis of the neutron component at high altitude mountains using active and passive measurement devices. Nuclear Instrum. Methods Phys. Res., Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 476, 69–73 (2002)

    ADS  Google Scholar 

  31. G.P. Hammer, A. Auvinen, B.L. De Stravola et al., Mortality from cancer and other causes in commercial airlines crews: a joint analysis of cohorts from 10 countries. Occup. Environ. Med. 71, 313–322 (2014)

    Google Scholar 

  32. D.H. Hathaway, The Solar Cycle. Living Rev. Solar Phys. 12(1), 1–81 (2015)

    ADS  Google Scholar 

  33. ICRP, Recommendations of the international commission on radiological protection. ICRP Publication 60. Ann. ICRP 21(1–3) (1991)

  34. ICRP, General principles for the radiation protection of workers. ICRP Publication 75. Ann. ICRP 27(1) (1997)

  35. ICRP, The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Ann. ICRP 37(2–4) (2007)

  36. ICRP, Assessment of radiation exposure of astronauts in space. ICRP Publication 123. Ann. ICRP 42(4) (2013)

  37. ICRP, Radiological protection from cosmic radiation in aviation. ICRP Publication 132. Ann. ICRP 45(1), 1–48 (2016)

    Google Scholar 

  38. ISO, ISO 20785. Dosimetry for Exposures to Cosmic Radiation in Civilian Aircraft—Part 2: Characterization of Instrument Response (International Organization for Standardization, Geneva, 2011)

    Google Scholar 

  39. ISO, ISO 20785. Dosimetry for Exposures to Cosmic Radiation in Civilian Aircraft—Part 1: Conceptual Basis for Measurements (International Organization for Standardization, Geneva, 2012)

    Google Scholar 

  40. ISO, ISO 20785. Dosimetry for Exposures to Cosmic Radiation in Civilian Aircraft—Part 3: Measurements at Aviation Altitude (International Organization for Standardization, Geneva, 2013)

    Google Scholar 

  41. P. Lantos, Radiation doses potentially received on-board aeroplanes during recent solar particle events. Radiat. Prot. Dosim. 118, 363–374 (2006). https://doi.org/10.1093/rpd/nci356

    Article  Google Scholar 

  42. P. Lantos, N. Fuller, History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements. Radiat. Prot. Dosim. 104, 199–210 (2003). https://doi.org/10.1093/oxfordjournals.rpd.a006183

    Article  Google Scholar 

  43. G. Leuthold, V. Mares, W. Rühm, E. Weitzenegger, H.G. Paretzke, Long-term measurements of cosmic ray neutrons by means of a Bonner spectrometer at mountain altitudes—first results. Radiat. Prot. Dosim. 126, 506–511 (2007)

    Google Scholar 

  44. J. Lillhök, P. Beck, J.F. Bottollier-Depois, M. Latocha, L. Lindborg, H. Roos, J. Roth, H. Schraube, F. Spurny, G. Stehno, F. Trompier, F. Wissmann, A comparison of ambient dose equivalent meters and dose calculations at constant flight conditions. Radiat. Meas. 42, 323–333 (2007). https://doi.org/10.1016/j.radmeas.2006.12.011

    Article  Google Scholar 

  45. J. Lochard, D.T. Bartlett, W. Rühm, H. Yasuda, J.F. Bottollier-Depois, ICRP publication 132: radiological protection from cosmic radiation in aviation. Ann. ICRP 45, 5–48 (2016)

    Google Scholar 

  46. V. Mares, G. Leuthold, Altitude-dependent dose conversion coefficients in EPCARD. Radiat. Prot. Dosim. 126, 581–584 (2007)

    Google Scholar 

  47. V. Mares, T. Maczka, G. Leuthold, W. Rühm, Air crew dosimetry with a new version of EPCARD. Radiat. Prot. Dosim. (2009). https://doi.org/10.1093/rpd/ncp129

    Article  Google Scholar 

  48. V. Mares, H. Yasuda, Aviation route doses calculated with EPCARD.Net and JISCARD EX. Radiat. Meas. 45(10), 1553–1556 (2010)

    Google Scholar 

  49. V. Mares, T. Maczka, G. Leuthold, W. Rühm, Air crew dosimetry with a new version of epcard. Radiat. Prot. Dosim. 136(4), 262–266 (2009)

    Google Scholar 

  50. D. Matthia, B. Heber, G. Reitz et al., Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. J. Geophys. Res. A: Space Phys. 114(8), art. no. A08104 (2009a)

  51. D. Matthia, B. Heber, G. Reitz et al., The ground level event 70 on December 13th, 2006 and related effective doses at aviation altitudes. Radiat. Prot. Dosim. 136(4), 304–310 (2009)

    Google Scholar 

  52. A.L. Mishev, F. Adibpour, I.G. Usoskin, E. Felsberger, Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71. Adv. Space Res. 55, 354–362 (2015). https://doi.org/10.1016/j.asr.2014.06.020

    Article  ADS  Google Scholar 

  53. T. Nakamura, Cosmic-ray neutron spectrometry and dosimetry. J. Nuclear Sci. Technol. 45, 1–7 (2008)

    Google Scholar 

  54. NCRP, Ionising Radiation Exposure of the Population of the United States. NCRP Report 160 (National Council on Radiation Protection and Measurements, Bethesda, 2009)

  55. K. O’Brien, W. Friedberg, H.H. Sauer, D.F. Smart, Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environ. Int. 22(1), 9–44 (1997)

    Google Scholar 

  56. D. O’Sullivan, D.T. Bartlett, P. Beck et al., Recent studies on the exposure of aircrew to cosmic and solar radiation. Radiat. Prot. Dosim. 100(1–4), 495–498 (2002)

    Google Scholar 

  57. C. Pioch, V. Mares, E.V. Vashenyuk, Y. Balabin, W. Rühm, Measurement of cosmic ray neutrons with Bonner sphere spectrometer and neutron monitor at 79°N. Nuclear Instrum. Methods Phys. Res., Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 626, 51–57 (2011)

    ADS  Google Scholar 

  58. V. Rafnsson, Cosmic radiation increases the risk of nuclear cataract in airline pilots. Arch. Ophthalmol. 123, 1102–1105 (2005)

    Google Scholar 

  59. D.A.H. Rasolonjatovo, H. Suzuki, N. Hirabayashi, T. Nunomiya, T. Nakamura, N. Nakao, Measurement for the dose-rates of the cosmic-ray components on the ground. J. Radiat. Res. 43, S27–S33 (2003)

    Google Scholar 

  60. P. Reynolds, J. Cone, M. Layefsky et al., Cancer incidence in Californian flight attendants. Cancer Causes Control 13, 317–324 (2002)

    Google Scholar 

  61. S. Roesler, W. Heinrich, H. Schraube, Monte Carlo calculation of the radiation field at aircraft altitudes. Radiat. Prot. Dosim. 98(4), e367–e388 (2002)

    Google Scholar 

  62. W. Rühm, E. Fantuzzi, R. Harrison, H. Schuhmacher, F. Vanhavere, J. Alves, J.F. Bottollier Depois, P. Fattibene, Z. Knežević, M.A. Lopez, S. Mayer, S. Miljanić, S. Neumaier, P. Olko, H. Stadtmann, R. Tanner, C. Woda, Eurados strategic research agenda: vision for dosimetry of ionising radiation. Radiat. Prot. Dosim. 168(2), 223–234 (2016)

    Google Scholar 

  63. W. Rühm, G. Rugel, T. Faestermann, K. Knie, A. Wallner, B. Heisinger, E. Nolte, A.A. Marchetti, R.E. Martinelli, K.L. Carroll, G. Korschinek, Cosmic-ray-induced 63Ni—a potential confounder of fast-neutron-induced 63Ni in copper samples from Hiroshima. Eur. Phys. J. A 17, 633–639 (2003)

    ADS  Google Scholar 

  64. W. Rühm, V. Mares, C. Pioch, G. Simmer, E. Weitzenegger, Continuous measurement of secondary neutrons from cosmic radiation at mountain altitudes and close to the north pole-a discussion in terms of H*(10). Radiat. Prot. Dosim. (2009a)

  65. W. Rühm, V. Mares, C. Pioch, G. Simmer, E. Weitzenegger, Continuous measurement of secondary neutrons from cosmic radiation at mountain altitudes and close to the north pole-a discussion in terms of H*(10). Radiat. Prot. Dosim. 136(4), 256–261 (2009)

    Google Scholar 

  66. W. Rühm, V. Mares, C. Pioch, E. Weitzenegger, R. Vockenroth, H.G. Paretzke, Measurements of secondary neutrons from cosmic radiation with a Bonner sphere spectrometer at 79°N. Radiat. Environ. Biophys. 48(2), 125–133 (2009)

    Google Scholar 

  67. H. Schraube, G. Leuthold, W. Heinrich, S. Roesler, V. Mares, G. Schraube, EPCARD e European Program Package for the Calculation of Aviation Route Doses, User’s Manual. GSF-National Research Center, Neuherberg, Germany (2002), http://www.helmholtz-muenchen.de/epcardISSN0721e1694. GSF-Report 08/02. Accessed 10 Dec 2018

  68. M.K. Schubauer-Berigan, J.L. Anderson, M.J. Hein et al., Breast cancer incidence in a cohort of U.S. flight attendants. Am. J. Ind. Med. 58, 252–266 (2015)

    Google Scholar 

  69. G. Shouop et al., Monte Carlo method for gamma spectrometry based on GEANT4 toolkit: efficiency calibration of BE6530 detector. J. Environ. Radioact. 189, 109–119 (2018). https://doi.org/10.1016/j.jenvrad.2018.03.015

    Article  Google Scholar 

  70. F. Spurny, I. Votockova, J.F. Bottollier-Depois, Geographical influence on the radiation exposure of an aircrew on board a subsonic aircraft. Radioprotection 31(2), 273–280 (1996)

    Google Scholar 

  71. L.W. Townsend, J.E. Nealy, J.W. Wilson, L.C. Simonsen, Estimates of galactic cosmic ray shielding requirements during solar minimum, Space Radiat. Nasa Patern NASA Lang. (February 1990), 1–12 (1995)

  72. UNSCEAR, Effects of Ionizing Radiation, Report to the General Assembly, Volume 1, Annex A: Epidemiological Studies of Radiation and Cancer (United Nations, New York, 2006)

    Google Scholar 

  73. UNSCEAR, Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes, Volume I, Annex B: Exposures from Natural Radiation Source (United Nations, New York, 2008)

    Google Scholar 

  74. I. Usoskin, G. Kovaltsov, Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. J. Geophys. Res. 111, D21206 (2006)

    ADS  Google Scholar 

  75. J.W. Van Dijk, Dose assessment of aircraft crew in the Netherlands. Radiat. Prot. Dosim. 106, 25–31 (2003)

    Google Scholar 

  76. F. Verhaegen, A. Poffijn, Air crew exposure on long-haul flights of the Belgian airlines. Radiat. Prot. Dosim. 88, 143–148 (2000)

    Google Scholar 

  77. B. Vuković, V. Radolić, I. Miklavčić, M. Poje, M. Varga, J. Planinić, Cosmic radiation dose in aircraft—a neutron track etch detector. J. Environ. Radioact. 98, 264–273 (2007). https://doi.org/10.1016/j.jenvrad.2007.05.002

    Article  Google Scholar 

  78. J.W. Wilson, S.A. Thibeault, F.A. Cucinotta, J.L. Shinn, M. Kim, R. Kiefer, F.F. Badavi, Issues in protection from galactic cosmic rays. Radiat. Environ. Biophys. 34(4), 217–222 (1995)

    Google Scholar 

  79. K. Yajima, H. Yasuda, M. Takada, T. Sato, T. Goka, H. Matsumoto, T. Nakamura, Measurements of cosmic-ray neutron energy spectra from thermal to 15 Mev with Bonner ball neutron detector in aircraft. J. Nuclear Sci. Technol. 47, 31–39 (2010)

    Google Scholar 

  80. H. Yasuda, T. Sato, M. Terakado, A personal use program for calculation of aviation route doses, in Proceedings of 12th International Congress of the International Radiation Protection Association (2008), http://www.irpa12.org.ar/fullpapers/FP3037.pdf, http://www.nirs.go.jp/research/jiscard/ex/index_ex_e.html. Accessed 10 Dec 2018

  81. H. Yasuda, T. Sato, H. Yonehara et al., Management of cosmic radiation exposure for aircrew in Japan. Radiat. Prot. Dosim. 146, 123–125 (2011)

    Google Scholar 

  82. H. Zeeb, G.P. Hammer, M. Blettner, Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure. J. Radiol. Prot. 32, 15–19 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the KINS-KAIST program (2018) for financial support and to Dr. W. RUEHM for positive criticisms and suggestions for manuscript improvement. They extend their gratitude to the reviewers and the editor committee of EPJPlus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cebastien Joel Guembou Shouop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guembou Shouop, C.J., Ndontchueng Moyo, M., Nguelem Mekongtso, E.J. et al. Radiological protection requirements with regard to cosmic ray exposure during air travel. Eur. Phys. J. Plus 135, 438 (2020). https://doi.org/10.1140/epjp/s13360-020-00468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00468-8

Navigation