Stellar energy loss rates beyond the standard model

Abstract

It is known that the dipole moments of the neutrino lead to important astrophysical and cosmological effects. In this regard, within the context of a \(U(1)_\mathrm{B-L}\) model, we develop and present novel analytical formulas to assess the effects of the anomalous magnetic moment and electric dipole moment of the neutrino on the stellar energy loss rates through some common physical process of pair-annihilation \(e^+e^-\rightarrow (\gamma , Z, Z^{\prime })\rightarrow \nu \bar{\nu }\). Our results show that the stellar energy loss rates strongly depend on the effective magnetic moment of the neutrino, but also on the parameters which characterize the adopted \(U(1)_\mathrm{B-L}\) model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data are publicly released on a regular basis by Repositorio Institucional de la Universidad Autonoma de Zacatecas at ricaxcan.uaz.edu.mx/jspui.]

References

  1. 1.

    C.D. Kilpatrick, T. Takaro, R.J. Foley, C.N. Leibler, Y. Pan, R.D. Campbell, W.V. Jacobson-Galan, H.A. Lewis, J.E. Lyke, C.E. Max, S.A. Medallon, A. Rest, Mon. Not. R. Astron. Soc. 480, 2072 (2018)

    ADS  Google Scholar 

  2. 2.

    M.A. Hendry, S.J. Smartt, R.M. Crockett et al., Mon. Not. R. Astron. Soc. 369, 1303 (2006)

    ADS  Google Scholar 

  3. 3.

    S.J. Smartt, Ann. Rev. Astron. Astroph. 47, 63 (2009)

    ADS  Google Scholar 

  4. 4.

    G. Beaudet, V. Petrosian, E. Salpeter, Astrophys. J. 150, 979 (1967)

    ADS  Google Scholar 

  5. 5.

    D.A. Dicus, Phys. Rev. D 6, 941 (1972)

    ADS  Google Scholar 

  6. 6.

    D.A. Dicus, E.W. Kolb, D.N. Schramm, D.L. Tubbs, Neutrino Pair Bremsstrahlung Including Neutral Current Effects, Technical Report (Texas Univ., Austin (USA), Center for Particle Theory (1976)

  7. 7.

    S. Alam, J. Anand, S. Biswas, A. Goyal, Phys. Rev. D 40, 2712 (1989)

    ADS  Google Scholar 

  8. 8.

    D.A. Dicus, E.W. Kolb, Phys. Rev. D 15, 977 (1977)

    ADS  Google Scholar 

  9. 9.

    S.W. Bruenn, Astrophys. J. S. 58, 771 (1985)

    ADS  Google Scholar 

  10. 10.

    A. Gutiérrez-Rodríguez, E. Torres-Lomas, A. González-Sánchez, Int. J. Mod. Phys. A 25, 12 (2010)

    Google Scholar 

  11. 11.

    M.A. Hernández-Ruíz, A. Gutiérrez-Rodríguez, A. González-Sánchez, Eur. Phys. J. A 53, 1 (2017)

    Google Scholar 

  12. 12.

    J. Ellis, K.A. Olive, Nucl. Phys. B 223, 252 (1983)

    ADS  Google Scholar 

  13. 13.

    M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018)

    ADS  Google Scholar 

  14. 14.

    M. Gerbino, M. Lattanzi. arXiv:1712.07109v1 [astro-ph]

  15. 15.

    G.G. Raffelt, Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles (University of Chicago press, 1996)

  16. 16.

    A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi, A. Ringwald, J. Cosmol. Astropart. Phys. 2015, 006 (2015)

    Google Scholar 

  17. 17.

    T. Fischer, S. Chakraborty, M. Giannotti, A. Mirizzi, A. Payez, A. Ringwald, Phys. Rev. D 94, 085012 (2016)

    ADS  Google Scholar 

  18. 18.

    K. Fujikawa, R. Shrock, Phys. Rev. Lett. 45, 963 (1980)

    ADS  Google Scholar 

  19. 19.

    R.E. Shrock, Nucl. Phys. B 206, 359 (1982)

    ADS  Google Scholar 

  20. 20.

    M. Fukugita, T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, Berlin, 2003)

    Google Scholar 

  21. 21.

    A. Llamas-Bugarín, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, Phys. Rev. D 95, 116008 (2017). and references therein

    ADS  Google Scholar 

  22. 22.

    R.N. Mohapatra, P.B. Pal, in Massive Neutrinos in Physics and Astrophysics. World Scientific Lecture Notes in Physics, vol. 72 (2004)

  23. 23.

    H. Ko, D. Jang, M. Kusakabe, M. Cheoun. arXiv:1910.04984v1 [hep-ph]

  24. 24.

    B. Kerimov, S. Zeinalov, V. Alizade, A. Mourao, Phys. Lett. B 274, 477 (1992)

    ADS  Google Scholar 

  25. 25.

    S. Blinnikov, Mon. Not. Roy. Astron. Soc. 266, 289 (1994)

    ADS  Google Scholar 

  26. 26.

    G.G. Raffelt, Phys. Rep. 320, 319 (1999)

    ADS  Google Scholar 

  27. 27.

    A. Heger, A. Friedland, M. Giannotti, V. Cirigliano, Astrophys. J. 696, 608 (2009)

    ADS  Google Scholar 

  28. 28.

    C. Giunti, A. Studenikin, Rev. Mod. Phys. 87, 531 (2015)

    ADS  Google Scholar 

  29. 29.

    A. Cisneros, Astrophys. Space Sci. 10, 87 (1971)

    ADS  Google Scholar 

  30. 30.

    R. Barbieri, R.N. Mohapatra, Phys. Rev. Lett. 61, 27 (1988)

    ADS  Google Scholar 

  31. 31.

    A.V. Kuznetsov, N.V. Mikheev, A.A. Okrugin. arXiv:0907.2905 [hep-ph]

  32. 32.

    G.G. Raffelt, Phys. Rep. 320, 319 (1999). and references therein

    ADS  Google Scholar 

  33. 33.

    S.I. Blinnikov, N.V. Dunina-Barkovskaya, Mon. Not. R. Astron. Soc. 266, 289 (1994)

    ADS  Google Scholar 

  34. 34.

    C. Arpesella et al., Borexino collaboration. Phys. Rev. Lett. 101, 091302 (2008)

    ADS  Google Scholar 

  35. 35.

    M. Deniz et al., TEXONO collaboration. Phys. Rev. D 81, 072001 (2010)

    ADS  Google Scholar 

  36. 36.

    R.N. Mohapatra, R.E. Marshak, Phys. Rev. Lett. 44, 1316 (1980)

    ADS  Google Scholar 

  37. 37.

    R. Marshak, R.N. Mohapatra, Phys. Lett. B 91, 222 (1980)

    ADS  Google Scholar 

  38. 38.

    W. Buchmüller, C. Greub, P. Minkowski, Phys. Lett. B 267, 395 (1991)

    ADS  Google Scholar 

  39. 39.

    W. Emam, S. Khalil, Eur. Phys. J. C 52, 625 (2007)

    ADS  Google Scholar 

  40. 40.

    S. Khalil, J. Phys. G Nucl. Part. Phys. 35, 055001 (2008)

    Google Scholar 

  41. 41.

    E.D. Carlson, Nucl. Phys. B 286, 378 (1987)

    ADS  Google Scholar 

  42. 42.

    L. Basso, A. Belyaev, S. Moretti, C.H. Shepherd-Themistocleous, Phys. Rev. D 80, 055030 (2009)

    ADS  Google Scholar 

  43. 43.

    S. Singirala, R. Mohanta, S. Patra, S. Rao. arXiv:1710.05775v2 [hep-ph]

  44. 44.

    J.F. Nieves, Phys. Rev. D 26, 3152 (1982)

    ADS  Google Scholar 

  45. 45.

    B. Kayser, A.S. Goldhaber, Phys. Rev. D 28, 2341 (1983)

    ADS  Google Scholar 

  46. 46.

    P. Vogel, J. Engel, Phys. Rev. D 39, 3378 (1989)

    ADS  Google Scholar 

  47. 47.

    A. Billur, M. Köksal, A. Gutiérrez-Rodríguez, M. Hernández-Ruíz, Phys. Rev. D 98, 095013 (2018)

    ADS  Google Scholar 

  48. 48.

    D. Yakovlev, A. Kaminker, O.Y. Gnedin, P. Haensel, Phys. Rep. 354, 1 (2001)

    ADS  Google Scholar 

  49. 49.

    S. Esposito, G. Mangano, G. Miele, I. Picardi, O. Pisanti, Mod. Phys. Lett. A 17, 491 (2002)

    ADS  Google Scholar 

  50. 50.

    S. Esposito, G. Mangano, G. Miele, I. Picardi, O. Pisanti, Nucl. Phys. B 658, 217 (2003)

    ADS  Google Scholar 

  51. 51.

    C. Aydin, Il Nuovo Cimento A 105, 843 (1992)

    ADS  Google Scholar 

  52. 52.

    A. Llamas-Bugarín, A. Gutiérrez-Rodríguez, A. González-Sánchez, M.A. Hernández-Ruíz (in progress)

Download references

Acknowledgements

A. G. R. and M. A. H. R. thank SNI and PROFEXCE (México).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Gutiérrez-Rodríguez.

Appendices

Appendix A: Lagrangian of the \(U(1)_{B-L}\) model

For the Lagrangian of the \(U(1)_\mathrm{B-L}\) model, the terms for the interactions between neutral gauge bosons \(Z, Z^{\prime }\) and a pair of fermions of the SM can be written as [21, 39, 40]:

$$\begin{aligned} \mathcal{L}_{NC}=\frac{-ig}{\cos \theta _W}\sum _f{{\bar{f}}}\gamma ^\mu \frac{1}{2}\left( g^f_V- g^f_A\gamma ^5\right) f Z_\mu + \frac{-ig}{\cos \theta _W}\sum _f{{\bar{f}}}\gamma ^\mu \frac{1}{2}\left( g^{\prime f}_V- g^{\prime f}_A\gamma ^5\right) f Z^{\prime }_\mu .\nonumber \\ \end{aligned}$$
(A1)

Thus, the expressions for the new couplings between the \(Z, Z^{\prime }\) bosons and the SM fermions are presented in Table 1. As usual, the SM couplings are recovered in the limit when \(\theta _\mathrm{B-L}=0\) and \(g^{\prime }_1=0\),

Table 1 New couplings of the \(Z, Z^{\prime }\) bosons with the SM fermions

Appendix B: Couplings constants

In Eq. (18), we have redefined the coupling constants of the \(U\left( 1\right) _\mathrm{B-L}\) model as:

$$\begin{aligned} g_{1}^\mathrm{[B-L]}&=\Bigg [\dfrac{1}{M_Z^4}\Big ( \left( g_V^{e}\right) ^2 +\left( g_A^{e}\right) ^2 \Big )\Big ( \left( g_V^{\nu }\right) ^2 +\left( g_A^{\nu }\right) ^2 \Big )+\dfrac{1}{M_{Z^\prime }^4}\Big ( \left( g_V^{\prime e}\right) ^2 +\left( g_A^{\prime e}\right) ^2 \Big )\nonumber \\&\quad \times \Big ( \left( g_V^{\prime \nu }\right) ^2 +\left( g_A^{\prime \nu }\right) ^2 \Big ) +\dfrac{2}{M_Z^2M_{Z^\prime }^2}\big (g_V^{e}g_V^{\prime e}+g_A^{e}g_A^{\prime e}\big )\big ( g_V^{\nu }g_V^{\prime \nu }+g_A^{\nu }g_A^{\prime \nu }\big )\Bigg ], \end{aligned}$$
(B1)
$$\begin{aligned} g_{2}^\mathrm{[B-L]}&=\Bigg [\dfrac{1}{M_Z^4}\Big ( \left( g_V^{e}\right) ^2 -\left( g_A^{e}\right) ^2 \Big )\Big ( \left( g_V^{\nu }\right) ^2 +\left( g_A^{\nu }\right) ^2 \Big )+\dfrac{1}{M_{Z^\prime }^4}\Big ( \left( g_V^{\prime e}\right) ^2 -\left( g_A^{\prime e}\right) ^2 \Big )\nonumber \\&\quad \times \Big ( \left( g_V^{\prime \nu }\right) ^2 +\left( g_A^{\prime \nu }\right) ^2 \Big ) +\dfrac{2}{M_Z^2M_{Z^\prime }^2}\big (g_V^{e}g_V^{\prime e}-g_A^{e}g_A^{\prime e}\big )\big ( g_V^{\nu }g_V^{\prime \nu }+g_A^{\nu }g_A^{\prime \nu }\big )\Bigg ]. \end{aligned}$$
(B2)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Llamas-Bugarín, A., Gutiérrez-Rodríguez, A., González-Sánchez, A. et al. Stellar energy loss rates beyond the standard model. Eur. Phys. J. Plus 135, 481 (2020). https://doi.org/10.1140/epjp/s13360-020-00454-0

Download citation