Tolman IV fluid sphere in bigravity

Abstract

We present Tolman IV spacetime representing compact fluid sphere in bigravity. Here, we have explored the effect of scale parameter k in the local matter distribution of compact stars. We have modelled for three well-known compact stars, and it shows that lower values of k lead to stiffer EoS. This claim is also supported by the graphical analysis. It can be observed that the sound speed and the adiabatic index are more for lower values of k. It is also seen that all the solutions of Einstein’s field equations are still satisfying the field equations in the presence of a background metric \(\gamma _{\mu \nu }\). However, the density and pressure are modified by extra term from the constant curvature background, thus affecting the EoS. One can also think that the parameter \(\alpha \equiv 1/k^2\) as coupling constant between the \(g_{\mu \nu }\) and \(\gamma _{\mu \nu }\) and consequently more the coupling stiffer is the EoS. As \(k\rightarrow \infty \), the background de Sitter spacetime reduces to Minkowski’s spacetime and the coupling vanishes. The solution satisfies the causality condition, all the energy conditions and equilibrium under gravity and hydrostatic forces. The stability of the local stellar structure is enhanced by reducing the scalar curvature of the background spacetime.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Y. Akrami et al., Phys. Lett. B 748, 37 (2015)

    ADS  Article  Google Scholar 

  2. 2.

    M.R. Avakian, Astrophysics 35, 318 (1991)

    ADS  Article  Google Scholar 

  3. 3.

    E. Babichev, M. Crisostomi, Phys. Rev. D 88, 084002 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    E. Babichev, R. Brito. arXiv:1503.0752

  5. 5.

    E. Babichev, A. Fabbri, J. High Energy Phys. 1407, 016 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    V. Baccetti et al., Class. Quant. Grav. 30, 015004 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    H. Bondi, Proc. R. Soc. Lond. A 281, 39 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    D.G. Boulware, S. Deser, Phys. Rev. D 6, 3368 (1972)

    ADS  Article  Google Scholar 

  9. 9.

    R. Brito et al., Phys. Rev. D 88, 064006 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    D. Comelli et al., J. High Energy Phys. 03, 067 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    D. Comelli et al., Phys. Rev. D 85, 024044 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    T. Damour et al., Phys. Rev. D 66, 104025 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    J. Enander, E. Mörtsella. arxiv:1507.00912v3

  14. 14.

    D. Falik, N. Rosen, Gen. Relativ. Gravit. 13, 599 (1981)

    ADS  Article  Google Scholar 

  15. 15.

    D. Falik, N. Rosen, Astrophys. J. 239, 1024 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    I. Goldman, N. Rosen, Astrophys. J. 212, 602 (1977)

    ADS  Article  Google Scholar 

  17. 17.

    L. Grigorian, Particles 1, 203 (2018)

    Article  Google Scholar 

  18. 18.

    A. Harpaz, N. Rosen, Astrophys. J. 291, 417 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    S.F. Hassan, R.A. Rosen, J. High Energy Phys. 1202, 126 (2012)

    ADS  Article  Google Scholar 

  20. 20.

    S.F. Hassan, R.A. Rosen, J. High Energy Phys. 1204, 123 (2012a)

    ADS  Article  Google Scholar 

  21. 21.

    G.S. Khadekar, T.M. Karade, Czechoslov. J. Phys. B 39, 962 (1989)

    ADS  Article  Google Scholar 

  22. 22.

    G.S. Khadekar, P. Kandalkar, Astrophys. Space Sci. 293, 415 (2004)

    ADS  Article  Google Scholar 

  23. 23.

    S.P. Kandalkar, S.P. Gawande, Astrophys. Space Sci. 326, 45 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    P. Piyali, Astrophys. Space Sci. 361, 284 (2016)

    Article  Google Scholar 

  25. 25.

    F. Rahaman et al., Phys. Rev. D 82, 104055 (2010)

    ADS  Article  Google Scholar 

  26. 26.

    D.R.K. Reddy, R. Venkateswarlu, Astrophys. Space Sci. 158, 169 (1989)

    ADS  Article  Google Scholar 

  27. 27.

    N. Rosen, Gen. Relativ. Gravit. 4, 435 (1973)

    ADS  Article  Google Scholar 

  28. 28.

    N. Rosen, Ann. Phys. 84, 455 (1974)

    ADS  Article  Google Scholar 

  29. 29.

    N. Rosen, Gen. Relativ. Gravit. 6, 259 (1975)

    ADS  Article  Google Scholar 

  30. 30.

    N. Rosen, Gen. Relativ. Gravit. 9, 339 (1978)

    ADS  Article  Google Scholar 

  31. 31.

    N. Rosen, Found. Phys. 10, 673 (1980)

    ADS  Article  Google Scholar 

  32. 32.

    N. Rosen, F. Rotbart, Gen. Relativ. Gravit. 10, 489 (1979)

    ADS  Article  Google Scholar 

  33. 33.

    N. Rosen, Found. Phys. 19, 339 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    N. Rosen, Phys. Rev. 57, 147 (1940)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    F. Rotbart, Gen. Relativ. Gravit. 10, 497 (1979)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    M.V. Strauss et al., JCAP 03, 042 (2012)

    Article  Google Scholar 

  37. 37.

    R.C. Tolman, Phys. Rev. 55, 364 (1939)

    ADS  Article  Google Scholar 

  38. 38.

    M.S. Volkov, Phys. Rev. D 85, 124043 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    M.S. Volkov, J. High Energy Phys. 101, 035 (2012)

    ADS  Article  Google Scholar 

  40. 40.

    Y.B. Zeldovich, I.D. Novikov, Relativistic Astrophysics Vol. 1: Stars and Relativity (University of Chicago Press, Chicago, 1971)

    Google Scholar 

Download references

Acknowledgements

Farook Rahaman would like to thank the authorities of the Inter-University Centre for Astronomy and Astrophysics, Pune, India, for providing research facilities. Susmita Sarkar is grateful to UGC (Grant No. 1162/(sc)(CSIR-UGC NET, DEC 2016)), Govt. of India, for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ksh. Newton Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Newton Singh, K., Sarkar, S. & Rahaman, F. Tolman IV fluid sphere in bigravity. Eur. Phys. J. Plus 135, 484 (2020). https://doi.org/10.1140/epjp/s13360-020-00450-4

Download citation