Searching for correlations of geomagnetic activities with high-energy EAS muons

Abstract

The paper aims to explore the asymmetry of the muon content of non-vertical and very high-energy Monte Carlo showers due to the influence of Earth’s geomagnetic field. Simulations have shown that the geomagnetic field modifies the trajectories of muons in a shower producing a polar asymmetry in the density/number of positive and negative muons in the shower front plane. The asymmetry is quantified by a transverse separation between the positive and negative muons barycentric positions through opposite quadrants across the shower core. The dependence of this transverse muon barycenter separation (TMBS) on polar position shows a clear maximum at a position that is correlated with the primary composition and geomagnetic activities. It is noticed that the maximum TMBS parameter exhibits sensitivity to any transient weakening of Earth’s magnetic shield caused by geomagnetic storm originated from bursting solar processes. Obtained simulation results are quite important to design any possible new experiment based on these features of muons in extensive air showers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    P.K.F. Greider, Extensive Air Showers: A Tutorial, Reference Manual and Data Book, vol. 1. ISBN-978-3-540-76940-8 (2010)

  2. 2.

    K. Greisen, Progress in Cosmic Ray Physics, vol. III (North Holland, Amsterdam, 1956)

    Google Scholar 

  3. 3.

    O. Sima et al., Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft. FZKA 7464, (2009)

  4. 4.

    R. Engel, D. Heck, T. Pierog, Annu. Rev. Nucl. Part. Sci. 61, 467 (2011)

    ADS  Article  Google Scholar 

  5. 5.

    H. Rebel et al., J. Phys. G: Nucl. Part. Phys. 35, 085203 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    J.N. Capdevielle, C. Le Gall, KhN Sanosyan, Astropart. Phys. 13, 259 (2000)

    ADS  Article  Google Scholar 

  7. 7.

    O. Sima et al., Nucl. Instrum. Methods A 638, 147 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    P.M. Chadwick et al., J. Phys. G: Nucl. Part. Phys. 25, 1223 (1999)

    ADS  Article  Google Scholar 

  9. 9.

    A. Cillis, S.J. Sciutto, J. Phys. G: Nucl. Part. Phys. 26, 309 (2000)

    ADS  Article  Google Scholar 

  10. 10.

    J.N. Capdevielle, R.K. Dey, A. Bhadra, in 33rd International Cosmic Ray Conference. ISBN-978-85-89064-29-3 (2013)

  11. 11.

    S. Dam, R.K. Dey, A. Bhadra, in Proceedings of the Information Systems Design and Intelligent Applications, vol. 339, ed. by J.K. Mandal et al. (2015), p. 1

  12. 12.

    R.K. Dey, S. Dam, Exp. Astron. 43, 75 (2017)

    ADS  Article  Google Scholar 

  13. 13.

    D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, T. Thouw, FZKA report-6019 ed. FZK The CORSIKA Air Shower Simulation Program, Karlsruhe (1998); National Aeronautics and Space Administration (NASA): US standard atmosphere Technical ReportNASA-TM-X-74335 (1976)

  14. 14.

    M. Bleicher, J. Phys. G: Nucl. Part. Phys. 25, 1859 (1999)

    ADS  Article  Google Scholar 

  15. 15.

    K. Werner et al., Phys. Rev. C 74, 044902 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    W.R. Nelson et al., The EGS4 Code System Report SLAC265 (Stanford Linear Accelerator Center, Stanford, 1985)

    Google Scholar 

  17. 17.

    W.D. Apel et al., Astropart. Phys. 24, 467 (2006)

    ADS  Article  Google Scholar 

  18. 18.

    https://www.ngdc.noaa.gov/geomagnetism

  19. 19.

    J.M.C. Montanus, Exp. Astron. 41(1), 159 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    R.K. Dey, S. Dam, S. Ray, Indian J. Phys. 91(4), 359 (2017)

    ADS  Article  Google Scholar 

  21. 21.

    T. Antoni et al., Astropart. Phys. 19, 703 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    J.C. Arteaga-Velázquez, Nucl. Phys. B Proc. Suppl. 196, 183 (2009)

    ADS  Article  Google Scholar 

  23. 23.

    H.V. Cane, Space Sci. Rev. 93, 55 (2000)

    ADS  Article  Google Scholar 

  24. 24.

    P. Subramanian et al., Astron. Astrophys. 494, 1107 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    P.K. Mohanty et al., Phys. Rev. Lett. 117, 171101 (2016)

    Article  Google Scholar 

  26. 26.

    http://omniweb.gsfc.nasa.gov/form/omnimin.html

Download references

Acknowledgements

RKD acknowledges the financial support from the SERB, Department of Science and Technology (Govt. of India) under the Grant No. EMR/2015/001390. We thank A. Basak for his help in running simulations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajat K. Dey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dey, R.K., Ray, S. & Dam, S. Searching for correlations of geomagnetic activities with high-energy EAS muons. Eur. Phys. J. Plus 135, 445 (2020). https://doi.org/10.1140/epjp/s13360-020-00448-y

Download citation