Anomalous quartic \(W^+W^-\gamma \gamma \) couplings in \(e^-p\) collisions at the LHeC and the FCC-he

Abstract

We conduct a study on measuring \(W^+W^-\) production and on the sensitivity limits at 95% confidence level on thirteen anomalous couplings obtained by dimension-8 operators related to the anomalous quartic \(W^+W^-\gamma \gamma \) couplings. We consider the main \(e^-p \rightarrow e^-\gamma ^*\gamma ^*p \rightarrow e^-W^+W^-p\) reaction with the sub-process \(\gamma ^*\gamma ^* \rightarrow W^+W^-\) at the Large Hadron electron Collider (LHeC) and the Future Circular Collider-hadron electron (FCC-he). For the LHeC, energies of the \(e^-\) beams are taken to be \(E_e =60\) and 140 GeV and the energy of the p beams is taken to be \(E_p = 7\) TeV. For the FCC-he, energies of the \(e^-\) beams are taken to be \(E_e =60\) and 140 GeV and the energy of the p beams is taken to be \(E_p = 50\) TeV, respectively. It is interesting to note that the LHeC and the FCC-he will lead to model-independent limits on the anomalous quartic \(W^+W^-\gamma \gamma \) couplings which are one order of magnitude more stringent than the CMS Collaboration limits and are competitive with other limits reported in the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    S.L. Glashow, Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  2. 2.

    A. Salam, J.C. Ward, Phys. Lett. 13, 168 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    ADS  Article  Google Scholar 

  4. 4.

    K. Hagiwara, in Physics and Experiments with Linear Colliders, vol. I, ed. by R. Orava, et al. (World Scientific, Singapore, 1992), p. 387

  5. 5.

    R. Barate, et al., [ALEPH Collaboration], Phys. Lett. B 462, 389 (1999)

  6. 6.

    P. Abreu, et al., [DELPHI Collaboration], Phys. Lett. B 459, 382 (1999)

  7. 7.

    M. Acciarri, et al., [L3 Collaboration], Phys. Lett. B 467, 171 (1999)

  8. 8.

    G. Abbiendi, et al., [OPAL Collaboration], Eur. Phys. J. C 8, 191 (1999)

  9. 9.

    K. Gounder, [CDF Collaboration], arXiv:hep-ex/9903038

  10. 10.

    B. Abbott, et al., [DØ Collaboration], Phys. Rev. D 62, 052005 (2000)

  11. 11.

    S. Chatrchyan, et al., [CMS Collaboration], JHEP 7, 116 (2013)

  12. 12.

    M. Aaboud, et al., [ATLAS Collaboration], Eur. Phys. J. C 77, 646 (2017)

  13. 13.

    G. Belanger, F. Boudjema, Y. Kurihara, D. Perret-Gallix, A. Semenov, Eur. Phys. J. C 13, 283 (2000)

    ADS  Article  Google Scholar 

  14. 14.

    W.J. Stirling, A. Werthenbach, Eur. Phys. J. C 14, 103 (2000)

    ADS  Article  Google Scholar 

  15. 15.

    G.A. Leil, W.J. Stirling, J. Phys. G 21, 517 (1995)

    ADS  Article  Google Scholar 

  16. 16.

    P.J. Dervan, A. Signer, W.J. Stirling, A. Werthenbach, J. Phys. G 26, 607 (2000)

    ADS  Article  Google Scholar 

  17. 17.

    C. Chong et al., Eur. Phys. J. C 74, 3166 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    M. Koksal, A. Senol, Int. J. Mod. Phys. A 30, 1550107 (2015)

    ADS  Article  Google Scholar 

  19. 19.

    C. Chen et al., Eur. Phys. J. C 74, 3166 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    W.J. Stirling, A. Werthenbach, Phys. Lett. B 466, 369 (1999)

    ADS  Article  Google Scholar 

  21. 21.

    S. Atag, I. Sahin, Phys. Rev. D 75, 073003 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    O.J.P. Eboli, M.C. Gonzalez-Garcia, S.F. Novaes, Nucl. Phys. B 411, 381 (1994)

    ADS  Article  Google Scholar 

  23. 23.

    O.J.P. Eboli, M.B. Magro, P.G. Mercadante, S.F. Novaes, Phys. Rev. D 52, 15 (1995)

    ADS  Article  Google Scholar 

  24. 24.

    I. Sahin, J. Phys. G 36, 075007 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    M. Koksal, V. Ari, A. Senol, Adv. High Energy Phys. 2016, 8672391 (2016)

    Article  Google Scholar 

  26. 26.

    E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81, 074003 (2010)

    ADS  Article  Google Scholar 

  27. 27.

    M. Koksal, Mod. Phys. Lett. A 29, 1450184 (2014)

    ADS  Article  Google Scholar 

  28. 28.

    A. Senol, M. Koksal, JHEP 1503, 139 (2015)

    Article  Google Scholar 

  29. 29.

    M. Koksal, Eur. Phys. J. Plus 130, 75 (2015)

    Article  Google Scholar 

  30. 30.

    D. Yang, Y. Mao, Q. Li, S. Liu, Z. Xu, K. Ye, JHEP 1304, 108 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    O.J.P. Eboli, M.C. Gonzalez-Garcia, S.M. Lietti, S.F. Novaes, Phys. Rev. D 63, 075008 (2001)

    ADS  Article  Google Scholar 

  32. 32.

    O.J.P. Eboli, M.C. Gonzalez-Garcia, S.M. Lietti, Phys. Rev. D 69, 095005 (2004)

    ADS  Article  Google Scholar 

  33. 33.

    P.J. Bell, Eur. Phys. J. C 64, 25 (2009)

    ADS  Article  Google Scholar 

  34. 34.

    A.I. Ahmadov, arXiv:1806.03460

  35. 35.

    M. Schonherr, JHEP 1807, 076 (2018)

    ADS  Article  Google Scholar 

  36. 36.

    Y. Wen et al., JHEP 1503, 025 (2015)

    ADS  Article  Google Scholar 

  37. 37.

    K. Ye, D. Yang, Q. Li, Phys. Rev. D 88, 015023 (2013)

    ADS  Article  Google Scholar 

  38. 38.

    G. Perez, M. Sekulla, D. Zeppenfeld, Eur. Phys. J. C 78, 759 (2018)

    ADS  Article  Google Scholar 

  39. 39.

    I. Sahin, B. Sahin, Phys. Rev. D 86, 115001 (2012)

    ADS  Article  Google Scholar 

  40. 40.

    A. Senol, M. Koksal, Phys. Lett. B 742, 143–148 (2015)

    ADS  Article  Google Scholar 

  41. 41.

    C. Baldenegro et al., JHEP 1706, 142 (2017)

    ADS  Article  Google Scholar 

  42. 42.

    S. Fichet et al., JHEP 1502, 165 (2015)

    ADS  Article  Google Scholar 

  43. 43.

    C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706, 142 (2017)

    ADS  Article  Google Scholar 

  44. 44.

    T. Pierzchala, K. Piotrzkowski, Nucl. Phys. Proc. Suppl. 257, 179 (2008)

    Google Scholar 

  45. 45.

    A. Gutiérrez-Rodríguez, C.G. Honorato, J. Montaño, M.A. Pérez, Phys. Rev. D 89, 034003 (2014)

    ADS  Article  Google Scholar 

  46. 46.

    O.J.P. Eboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, Phys. Rev. D 74, 073005 (2006)

    ADS  Article  Google Scholar 

  47. 47.

    O. Brüning, J. Jowett, M. Klein, D. Pellegrini, D. Schulte, F. Zimmermann, EDMS 17979910 FCC-ACC-RPT-0012, V1.0, 6 April, 2017, https://fcc.web.cern.ch/Documents/FCCheBaselineParameters.pdf

  48. 48.

    J.L.A. Fernandez, et al.. [LHeC Study Group], J. Phys. G 39, 075001 (2012)

  49. 49.

    J.L.A. Fernandez, et al., [LHeC Study Group], arXiv:1211.5102

  50. 50.

    J.L.A. Fernandez, et al., arXiv:1211.4831

  51. 51.

    B. Huan-Yu, R.-Y. Zhang, W. Xing-Gang, W.-G. Ma, X.-Z. Li, S. Owusu, Phys. Rev. D 95, 074020 (2017)

    ADS  Article  Google Scholar 

  52. 52.

    Y.C. Acar, A.N. Akay, S. Beser, A.C. Canbay, H. Karadeniz, U. Kaya, B.B. Oner, S. Sultansoy, Nucl. Instrum. Meth. A 871, 47 (2017)

    ADS  Article  Google Scholar 

  53. 53.

    C. Degrande, et al., arXiv: 1309.7890

  54. 54.

    M. Baak, et al., Working group report: precision study of electroweak interactions, arXiv:1310.6708

  55. 55.

    V. Khachatryan, et al., [CMS Collaboration], JHEP 8 119 (2016)

  56. 56.

    V. Khachatryan, et al., [CMS Collaboration], JHEP 6 106 (2017)

  57. 57.

    C.F. von Weizsacker, Z. Phys. 88, 612 (1934)

    ADS  Article  Google Scholar 

  58. 58.

    E.J. Williams, Kong. Dan. Vid. Sel. Mat. Fys. Med. 13N4, 1 (1935)

  59. 59.

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, Comput. Phys. Commun. 185, 2250 (2014)

    ADS  Article  Google Scholar 

  60. 60.

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High Energy Phys. 06, 128 (2011)

    ADS  Article  Google Scholar 

  61. 61.

    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, Comput. Phys. Commun. 183, 1201 (2012)

    ADS  Article  Google Scholar 

  62. 62.

    V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15, 181 (1975)

    ADS  Article  Google Scholar 

  63. 63.

    M.S. Chen, T.P. Cheng, I.J. Muzinich, H. Terazawa, Phys. Rev. D 7, 3485 (1973)

    ADS  Article  Google Scholar 

  64. 64.

    M. Köksal, A.A. Billur, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, arXiv:1910.06747 [hep-ph]

  65. 65.

    A. Gutiérrez-Rodríguez, M. Köksal, A.A. Billur, M.A. Hernández-Ruíz, arXiv:1910.02307 [hep-ph]

  66. 66.

    A.A. Billur, M. Köksal, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, arXiv:1909.10299 [hep-ph]

  67. 67.

    M. Köksal, A.A. Billur, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, arXiv:1905.02564 [hep-ph]

  68. 68.

    A. Gutiérrez-Rodríguez, M. Köksal, A.A. Billur, M.A. Hernández-Ruíz, arXiv:1903.04135 [hep-ph]

  69. 69.

    V. Ari, E. Gurkanli, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, M. Koksal, arXiv:1911.03993

Download references

Acknowledgements

A. G. R. and M. A. H. R. thank SNI and PROFEXCE (México).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Köksal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ari, V., Gurkanli, E., Gutiérrez-Rodríguez, A. et al. Anomalous quartic \(W^+W^-\gamma \gamma \) couplings in \(e^-p\) collisions at the LHeC and the FCC-he. Eur. Phys. J. Plus 135, 336 (2020). https://doi.org/10.1140/epjp/s13360-020-00344-5

Download citation