Nonclassical properties of two families of q-coherent states in the Fock representation space of q-oscillator algebra

Abstract

We clarify that the q-generalization of the simple harmonic oscillator to the Arik–Coon one leads us to obtain two different families of q-coherent states in a Fock representation space of the system. They are eigenstates of unbounded and bounded annihilation operators associated with the Arik–Coon q-oscillator. The first family satisfies the resolution of identity condition on all the complex plane and the second one on a disc in radius \(1/\sqrt{1-q}\). Their positive definite q-measures are different, but in the limit \(q\rightarrow 1\) both of them convert to the measure of well-known coherent states for the simple harmonic oscillator. The first and second families of the q-coherent states are also deformed eigenstates of the bounded and unbounded annihilation operators, respectively. Thus, it is possible to study the statistical properties of both q-coherent states via both bounded and unbounded operators. The nonclassical behaviours of interest in this article are signal-to-quantum noise ratio, sub-Poissonian photon statistics, photon antibunching, quadrature squeezing effect and bipartite entanglement for the two families of the q-coherent states, as well as Hillery-type higher-order squeezing for their corresponding photon-added states.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 18 June 2020

    Unfortunately, after publication, we found some misprints in Eur. Phys. J. Plus (2020) <Emphasis Type="Bold">135</Emphasis>: 253. We list them here because their number is not few.

Notes

  1. 1.

    Preparing the figures of this article we have used the following approximations: \(E_{q}((1-q)|z|^2)\cong 1+\sum _{k=1}^{1000}\frac{q^{\frac{k(k-1)}{2}}{(1-q)^k|z|^{2k}}}{\Pi _{l=1}^{k}(1-q^l)}\) and \(e_{q}((1-q)|z|^2)\cong 1+\sum _{k=1}^{1000}\frac{{(1-q)^k|z|^{2k}}}{\Pi _{l=1}^{k}(1-q^l)}\).

References

  1. 1.

    E. Schrödinger, Die Naturwissenshaften 14, 664–666 (1926)

    ADS  Article  Google Scholar 

  2. 2.

    R.J. Glauber, Phys. Rev. 131, 2766–2788 (1963)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    L. Mandel, Phys. Scr. T12(34), 34–42 (1986)

    ADS  Article  Google Scholar 

  4. 4.

    M. Hillery, Phys. Rev. A 36, 3796–3802 (1987)

    ADS  Article  Google Scholar 

  5. 5.

    V.V. Buzek, A. Vidiella-Barranco, P.L. Knight, Phys. Rev. A 45, 6570–6585 (1992)

    ADS  Article  Google Scholar 

  6. 6.

    A. Mann, B.C. Sanders, W.J. Munro, Phys. Rev. A 51, 989–991 (1995)

    ADS  Article  Google Scholar 

  7. 7.

    Y. Feng, A.I. Solomon, Opt. Commun. 152, 299–301 (1998)

    ADS  Article  Google Scholar 

  8. 8.

    X.G. Wang, B.C. Sanders, Sh Pan, J. Phys. A Math. Gen. 33, 7451–7467 (2000)

    ADS  Article  Google Scholar 

  9. 9.

    X. Wang, B.C. Sanders, Phys. Rev. A 65, 012303 (2001)

    ADS  Article  Google Scholar 

  10. 10.

    N. Behzadi, H. Fakhri, Eur. Phys. J. D 61, 253–259 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    B.C. Sanders, J. Phys. A Math. Theor. 45, 244002 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    B. C. Sanders, Forty-five years of entangled coherent states, Proceedings of the first international workshop on ECS and it’s application to QIS; T.M.Q.C. 111-113, (2013)

  13. 13.

    W.S. Chung, H. Hassanabadi, Eur. Phys. J. Plus 134, 394 (2019)

    Article  Google Scholar 

  14. 14.

    V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Physica 72, 597–615 (1974)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Y. Xia, G. Guo, Phys. Lett. A 136, 281–283 (1989)

    ADS  Article  Google Scholar 

  16. 16.

    C.C. Gerry, J. Mod. Opt. 40, 1053–1071 (1993)

    ADS  Article  Google Scholar 

  17. 17.

    V. Buzek, P.L. Knight, in Quantum interference, superposition states of light and nonclassical effects, in: progress in optics, vol. 34, ed. by E. Wolf (Elsevier, Amsterdam, 1995), 1158

  18. 18.

    V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, Phys. Scr. 55, 528–541 (1997)

    ADS  Article  Google Scholar 

  19. 19.

    B. Mojaveri, A. Dehghani, R. Jafarzadeh Bahrbeig, Eur. Phys. J. Plus 133, 529 (2018)

    Article  Google Scholar 

  20. 20.

    A. Bendjeffal, A. Smida, J. Messamah et al., Eur. Phys. J. Plus 134, 330 (2019)

    Article  Google Scholar 

  21. 21.

    B. Mojaveri, A. Dehghani, R. Jafarzadeh Bahrbeig, Eur. Phys. J. Plus 134, 456 (2019)

    Article  Google Scholar 

  22. 22.

    H.P. Yuen, Phys. Rev. A 13, 2226–2243 (1976)

    ADS  Article  Google Scholar 

  23. 23.

    C.M. Caves, B.L. Schumaker, Phys. Rev. A 31, 3068–3092 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492–497 (1991)

    ADS  Article  Google Scholar 

  25. 25.

    C. Quesne, Phys. Lett. A 288, 241–250 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    A. Dehghani, B. Mojaveri, Eur. Phys. J. Plus 132, 502 (2017)

    Article  Google Scholar 

  27. 27.

    A. Anbaraki, D. Afshar, M. Jafarpour, Eur. Phys. J. Plus 133, 2 (2018)

    Article  Google Scholar 

  28. 28.

    Z.-Z. Xin, Y.-B. Duan, W. Zhang, W.-J. Qian, M. Hirayama, K. Matumoto, J. Phys. B 29, 2597–2606 (1996)

    ADS  Article  Google Scholar 

  29. 29.

    D.F. Walls, Nature 306, 141–146 (1983)

    ADS  Article  Google Scholar 

  30. 30.

    R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709–759 (1987)

    ADS  Article  Google Scholar 

  31. 31.

    V. Buzek, J. Mod. Opt. 37, 303–316 (1990)

    ADS  Article  Google Scholar 

  32. 32.

    V.V. Dodonov, M.A. Man’ko, V.I. Man’ko, A. Vourdas, J. Russ. Laser Res. 28, 404–428 (2007)

    Article  Google Scholar 

  33. 33.

    X. Xu, J. Wang, H. Yuan et al., Eur. Phys. J. Plus 134, 134 (2019)

    ADS  Article  Google Scholar 

  34. 34.

    V. Buzek, P.L. Knight, Opt. Commun. 81, 331–336 (1991)

    ADS  Article  Google Scholar 

  35. 35.

    R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 2000)

    Google Scholar 

  36. 36.

    X.-B. Wang, L.C. Kwek, Y. Liu, C.H. Oh, J. Phys. B At. Mol. Opt. Phys. 34, 1059–1078 (2001)

    ADS  Article  Google Scholar 

  37. 37.

    Z.-Z. Xin, Y.-B. Duan, H.-M. Zhang, M. Hirayama, K. Matumoto, J. Phys. B 29, 4493–4506 (1996)

    ADS  Article  Google Scholar 

  38. 38.

    M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Phys. Rev. A 40, 2494–2503 (1989)

    ADS  Article  Google Scholar 

  39. 39.

    M. Arik, D.D. Coon, J. Math. Phys. 17, 524–527 (1976)

    ADS  Article  Google Scholar 

  40. 40.

    E.V. Damaskinskii, P.P. Kulish, J. Sov. Math. 62, 2963–2986 (1992)

    Article  Google Scholar 

  41. 41.

    A.M. Perelomov, Helv. Phys. Acta 68, 554–576 (1995)

    MathSciNet  Google Scholar 

  42. 42.

    A. Klymik, K. Schmüdgen, Quantum Groups and Their Representations (Springer, Berlin, 1997)

    Google Scholar 

  43. 43.

    K.A. Penson, A.I. Solomon, J. Math. Phys. 40, 2354–2363 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    C. Quesne, J. Phys. A Math. Gen. 35, 9213–9226 (2002)

    ADS  Article  Google Scholar 

  45. 45.

    C. Quesne, K.A. Penson, V.M. Tkachuk, Phys. Lett. A 313, 29–36 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  46. 46.

    H. Fakhri, A. Hashemi, Int. J. Geom. Methods Mod. Phys. 13, 1650028 (2016)

    MathSciNet  Article  Google Scholar 

  47. 47.

    H. Fakhri, A. Hashemi, Phys. Rev. A 93, 013802 (2016)

    ADS  Article  Google Scholar 

  48. 48.

    H. Fakhri, M. Sayyah-Fard, Ann. Phys. 387, 14–28 (2017)

    ADS  Article  Google Scholar 

  49. 49.

    V.I. Man’ko, G.M. Tino, Phys. Lett. A 202, 24–27 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  50. 50.

    V.I. Man’ko, R.V. Mendes, J. Phys. A Math. Gen. 31, 6037–6044 (1998)

    ADS  Article  Google Scholar 

  51. 51.

    M. Fox, Quantum Optics—An introduction (Oxford University Press, Oxford, 2006)

    Google Scholar 

  52. 52.

    H.P. Yuen, Phys. Lett. A 56, 105–106 (1976)

    ADS  Article  Google Scholar 

  53. 53.

    L. Mandel, Opt. Lett. 4, 205–207 (1979)

    ADS  Article  Google Scholar 

  54. 54.

    R.J. Glauber, Phys. Rev. Lett. 10, 84–86 (1963)

    ADS  MathSciNet  Article  Google Scholar 

  55. 55.

    E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277–279 (1963)

    ADS  MathSciNet  Article  Google Scholar 

  56. 56.

    C.C. Gerry, P.L. Knight, Am. J. Phys. 65, 964–974 (1997)

    ADS  Article  Google Scholar 

  57. 57.

    C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  58. 58.

    L. Mandel, Phys. Rev. Lett. 49, 136–138 (1982)

    ADS  Article  Google Scholar 

  59. 59.

    Y. Aharonov, L. Susskind, Phys. Rev. 155, 1428–1431 (1967)

    ADS  Article  Google Scholar 

  60. 60.

    N. Gisin, Phys. Lett. A 154, 201–202 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  61. 61.

    T.M. Duc, J. Noh, Opt. Commun. 281, 2842–2848 (2008)

    ADS  Article  Google Scholar 

  62. 62.

    S. Dey, V. Hussin, Phys. Rev. A 93, 053824 (2016)

    ADS  Article  Google Scholar 

  63. 63.

    F. Li, X. Li, D.L. Lin, T.F. George, Phys. Rev. A 45, 3133–3138 (1992)

    ADS  Article  Google Scholar 

  64. 64.

    S.L. Braunstein, A. Mann, M. Revzen, Phys. Rev. Lett. 68, 3259–3261 (1992)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Fakhri.

Appendix A: q-exponential functions and q-integral representations of the q-factorial

Appendix A: q-exponential functions and q-integral representations of the q-factorial

For a fixed parameter q, the two different generalizations of exponential function are defined as [42]

$$\begin{aligned}&{E_q(x)}:=\sum _{n=0}^{\infty }\frac{q^\frac{n(n-1)}{2}}{(q;q)_n}{x^n}, \end{aligned}$$
(A1a)
$$\begin{aligned}&{e_q(x)}:=\sum _{n=0}^{\infty }\frac{x^n}{(q;q)_n}, \end{aligned}$$
(A1b)

where \({(a;q)_n:=(1-a)(1-aq)(1-aq^2)\cdots (1-aq^{n-1})}\). The convergence regions of the q-exponential functions for \(0<q<1\) are \(|x|<\infty \) and \(|x|<1\), respectively. The relation \({e_q(x)}{E_q(-x)}=1\) and the classical limits \(\lim _{q\rightarrow 1} {e_q((1-q)x)}=exp(x)\) and \(\lim _{q\rightarrow 1}{E_q((1-q)x)}=exp(x)\) are readily derived from (A1a) and (A1b). Furthermore, in the case \(|q|<1\), there exists an infinite product expansion as follows [46]

$$\begin{aligned} e_{q}(x)=\frac{1}{\prod _{k=0}^\infty (1-q^{k} x)}. \end{aligned}$$
(A2)

Let us assume that f(x) and g(x) are two arbitrary and continuous functions on the real line. The symmetric and asymmetric q-derivatives \(\widetilde{D}_{q,x}\) and \(D_{q,x}\) are defined as [42]

$$\begin{aligned}&\widetilde{D}_{q,x}f(x):=\frac{f(q x)-f(q^{-1}x)}{(q-q^{-1})x},&\end{aligned}$$
(A3a)
$$\begin{aligned}&D_{q,x}f(x)=\frac{f(x)-f(qx)}{(1-q)x},&\end{aligned}$$
(A3b)

with the following q-analogues for the Leibniz rule:

$$\begin{aligned}&\widetilde{D}_{q,x}(f(x) g(x))=(\widetilde{D}_{q,x}f(x))\,g(q^{-1}x)+f(q x)\,\widetilde{D}_{q,x}g(x),&\end{aligned}$$
(A4a)
$$\begin{aligned}&{D_{q,x}}(f(x) g(x))=({D_{q,x}}f(x))\, g(qx)+f(x)\,D_{q,x}g(x).&\end{aligned}$$
(A4b)

Being the inverse operations of the q-derivatives \(\widetilde{D}_{q,x}\) and \({D_{q,x}}\), the q-integrals on the intervals \([0,\infty )\) and [0, c] with c as a positive real number are defined as [41, 46]

$$\begin{aligned}&\int _0^{\infty }f(x)\widetilde{d_q}x=(q^{-1}-q)\sum _{j=-\infty }^{\infty }q^{2j+1}f(q^{2j+1}),&\end{aligned}$$
(A5a)
$$\begin{aligned}&\int _{0}^{c}f(x)d_{q}x:=(1-q)c\sum _{j=0}^{\infty }q^j{f(q^j{c})}.&\end{aligned}$$
(A5b)

For any nonzero complex number n, a q-number as \([n]_q:=\frac{1-q^n}{1-q}\) is associated. Also, the q-factorial is defined as \([0]_q!=1\) and \([n]_q!:=[1]_q [2]_q \cdots [n]_q\) for n as a positive integer number. For \(0<q<1\), the following infinite and finite integral representations are obtained by the above definitions for the q- and \(q^2\)-factorials, respectively [40, 41, 46, 47]

$$\begin{aligned}&\int _{0}^{\infty }\frac{x^n}{E_{q^2}((q^{-1}-q)x)}\widetilde{d}_{q}x=q^{-n^2}[n]_{q^2}!,&\end{aligned}$$
(A6a)
$$\begin{aligned}&\int _{0}^{\frac{1}{1-q}}\frac{x^n}{{e_q}((1-q)x)}d_{q}x=[n]_q!.&\end{aligned}$$
(A6b)

We call the attention of the reader to an important issue: quantum number introduced in [46] is symmetric, and to obtain integral relation (A6a), one should write it in terms of the asymmetric quantum number used in this article. Both of the q-integrals convert to the infinite integral representation of the ordinary factorial as \(q\rightarrow 1\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fakhri, H., Mousavi-Gharalari, S.E. Nonclassical properties of two families of q-coherent states in the Fock representation space of q-oscillator algebra. Eur. Phys. J. Plus 135, 253 (2020). https://doi.org/10.1140/epjp/s13360-020-00265-3

Download citation