Skip to main content
Log in

Nonclassical properties of two families of q-coherent states in the Fock representation space of q-oscillator algebra

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 18 June 2020

This article has been updated

Abstract

We clarify that the q-generalization of the simple harmonic oscillator to the Arik–Coon one leads us to obtain two different families of q-coherent states in a Fock representation space of the system. They are eigenstates of unbounded and bounded annihilation operators associated with the Arik–Coon q-oscillator. The first family satisfies the resolution of identity condition on all the complex plane and the second one on a disc in radius \(1/\sqrt{1-q}\). Their positive definite q-measures are different, but in the limit \(q\rightarrow 1\) both of them convert to the measure of well-known coherent states for the simple harmonic oscillator. The first and second families of the q-coherent states are also deformed eigenstates of the bounded and unbounded annihilation operators, respectively. Thus, it is possible to study the statistical properties of both q-coherent states via both bounded and unbounded operators. The nonclassical behaviours of interest in this article are signal-to-quantum noise ratio, sub-Poissonian photon statistics, photon antibunching, quadrature squeezing effect and bipartite entanglement for the two families of the q-coherent states, as well as Hillery-type higher-order squeezing for their corresponding photon-added states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 18 June 2020

    Unfortunately, after publication, we found some misprints in Eur. Phys. J. Plus (2020) 135: 253. We list them here because their number is not few.

Notes

  1. Preparing the figures of this article we have used the following approximations: \(E_{q}((1-q)|z|^2)\cong 1+\sum _{k=1}^{1000}\frac{q^{\frac{k(k-1)}{2}}{(1-q)^k|z|^{2k}}}{\Pi _{l=1}^{k}(1-q^l)}\) and \(e_{q}((1-q)|z|^2)\cong 1+\sum _{k=1}^{1000}\frac{{(1-q)^k|z|^{2k}}}{\Pi _{l=1}^{k}(1-q^l)}\).

References

  1. E. Schrödinger, Die Naturwissenshaften 14, 664–666 (1926)

    Article  ADS  Google Scholar 

  2. R.J. Glauber, Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Mandel, Phys. Scr. T12(34), 34–42 (1986)

    Article  ADS  Google Scholar 

  4. M. Hillery, Phys. Rev. A 36, 3796–3802 (1987)

    Article  ADS  Google Scholar 

  5. V.V. Buzek, A. Vidiella-Barranco, P.L. Knight, Phys. Rev. A 45, 6570–6585 (1992)

    Article  ADS  Google Scholar 

  6. A. Mann, B.C. Sanders, W.J. Munro, Phys. Rev. A 51, 989–991 (1995)

    Article  ADS  Google Scholar 

  7. Y. Feng, A.I. Solomon, Opt. Commun. 152, 299–301 (1998)

    Article  ADS  Google Scholar 

  8. X.G. Wang, B.C. Sanders, Sh Pan, J. Phys. A Math. Gen. 33, 7451–7467 (2000)

    Article  ADS  Google Scholar 

  9. X. Wang, B.C. Sanders, Phys. Rev. A 65, 012303 (2001)

    Article  ADS  Google Scholar 

  10. N. Behzadi, H. Fakhri, Eur. Phys. J. D 61, 253–259 (2011)

    Article  ADS  Google Scholar 

  11. B.C. Sanders, J. Phys. A Math. Theor. 45, 244002 (2012)

    Article  ADS  Google Scholar 

  12. B. C. Sanders, Forty-five years of entangled coherent states, Proceedings of the first international workshop on ECS and it’s application to QIS; T.M.Q.C. 111-113, (2013)

  13. W.S. Chung, H. Hassanabadi, Eur. Phys. J. Plus 134, 394 (2019)

    Article  Google Scholar 

  14. V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Physica 72, 597–615 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  15. Y. Xia, G. Guo, Phys. Lett. A 136, 281–283 (1989)

    Article  ADS  Google Scholar 

  16. C.C. Gerry, J. Mod. Opt. 40, 1053–1071 (1993)

    Article  ADS  Google Scholar 

  17. V. Buzek, P.L. Knight, in Quantum interference, superposition states of light and nonclassical effects, in: progress in optics, vol. 34, ed. by E. Wolf (Elsevier, Amsterdam, 1995), 1158

  18. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, Phys. Scr. 55, 528–541 (1997)

    Article  ADS  Google Scholar 

  19. B. Mojaveri, A. Dehghani, R. Jafarzadeh Bahrbeig, Eur. Phys. J. Plus 133, 529 (2018)

    Article  Google Scholar 

  20. A. Bendjeffal, A. Smida, J. Messamah et al., Eur. Phys. J. Plus 134, 330 (2019)

    Article  Google Scholar 

  21. B. Mojaveri, A. Dehghani, R. Jafarzadeh Bahrbeig, Eur. Phys. J. Plus 134, 456 (2019)

    Article  Google Scholar 

  22. H.P. Yuen, Phys. Rev. A 13, 2226–2243 (1976)

    Article  ADS  Google Scholar 

  23. C.M. Caves, B.L. Schumaker, Phys. Rev. A 31, 3068–3092 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  24. G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492–497 (1991)

    Article  ADS  Google Scholar 

  25. C. Quesne, Phys. Lett. A 288, 241–250 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Dehghani, B. Mojaveri, Eur. Phys. J. Plus 132, 502 (2017)

    Article  Google Scholar 

  27. A. Anbaraki, D. Afshar, M. Jafarpour, Eur. Phys. J. Plus 133, 2 (2018)

    Article  Google Scholar 

  28. Z.-Z. Xin, Y.-B. Duan, W. Zhang, W.-J. Qian, M. Hirayama, K. Matumoto, J. Phys. B 29, 2597–2606 (1996)

    Article  ADS  Google Scholar 

  29. D.F. Walls, Nature 306, 141–146 (1983)

    Article  ADS  Google Scholar 

  30. R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709–759 (1987)

    Article  ADS  Google Scholar 

  31. V. Buzek, J. Mod. Opt. 37, 303–316 (1990)

    Article  ADS  Google Scholar 

  32. V.V. Dodonov, M.A. Man’ko, V.I. Man’ko, A. Vourdas, J. Russ. Laser Res. 28, 404–428 (2007)

    Article  Google Scholar 

  33. X. Xu, J. Wang, H. Yuan et al., Eur. Phys. J. Plus 134, 134 (2019)

    Article  ADS  Google Scholar 

  34. V. Buzek, P.L. Knight, Opt. Commun. 81, 331–336 (1991)

    Article  ADS  Google Scholar 

  35. R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 2000)

    MATH  Google Scholar 

  36. X.-B. Wang, L.C. Kwek, Y. Liu, C.H. Oh, J. Phys. B At. Mol. Opt. Phys. 34, 1059–1078 (2001)

    Article  ADS  Google Scholar 

  37. Z.-Z. Xin, Y.-B. Duan, H.-M. Zhang, M. Hirayama, K. Matumoto, J. Phys. B 29, 4493–4506 (1996)

    Article  ADS  Google Scholar 

  38. M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Phys. Rev. A 40, 2494–2503 (1989)

    Article  ADS  Google Scholar 

  39. M. Arik, D.D. Coon, J. Math. Phys. 17, 524–527 (1976)

    Article  ADS  Google Scholar 

  40. E.V. Damaskinskii, P.P. Kulish, J. Sov. Math. 62, 2963–2986 (1992)

    Article  Google Scholar 

  41. A.M. Perelomov, Helv. Phys. Acta 68, 554–576 (1995)

    MathSciNet  Google Scholar 

  42. A. Klymik, K. Schmüdgen, Quantum Groups and Their Representations (Springer, Berlin, 1997)

    Book  Google Scholar 

  43. K.A. Penson, A.I. Solomon, J. Math. Phys. 40, 2354–2363 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  44. C. Quesne, J. Phys. A Math. Gen. 35, 9213–9226 (2002)

    Article  ADS  Google Scholar 

  45. C. Quesne, K.A. Penson, V.M. Tkachuk, Phys. Lett. A 313, 29–36 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  46. H. Fakhri, A. Hashemi, Int. J. Geom. Methods Mod. Phys. 13, 1650028 (2016)

    Article  MathSciNet  Google Scholar 

  47. H. Fakhri, A. Hashemi, Phys. Rev. A 93, 013802 (2016)

    Article  ADS  Google Scholar 

  48. H. Fakhri, M. Sayyah-Fard, Ann. Phys. 387, 14–28 (2017)

    Article  ADS  Google Scholar 

  49. V.I. Man’ko, G.M. Tino, Phys. Lett. A 202, 24–27 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  50. V.I. Man’ko, R.V. Mendes, J. Phys. A Math. Gen. 31, 6037–6044 (1998)

    Article  ADS  Google Scholar 

  51. M. Fox, Quantum Optics—An introduction (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  52. H.P. Yuen, Phys. Lett. A 56, 105–106 (1976)

    Article  ADS  Google Scholar 

  53. L. Mandel, Opt. Lett. 4, 205–207 (1979)

    Article  ADS  Google Scholar 

  54. R.J. Glauber, Phys. Rev. Lett. 10, 84–86 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  55. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277–279 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  56. C.C. Gerry, P.L. Knight, Am. J. Phys. 65, 964–974 (1997)

    Article  ADS  Google Scholar 

  57. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  58. L. Mandel, Phys. Rev. Lett. 49, 136–138 (1982)

    Article  ADS  Google Scholar 

  59. Y. Aharonov, L. Susskind, Phys. Rev. 155, 1428–1431 (1967)

    Article  ADS  Google Scholar 

  60. N. Gisin, Phys. Lett. A 154, 201–202 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  61. T.M. Duc, J. Noh, Opt. Commun. 281, 2842–2848 (2008)

    Article  ADS  Google Scholar 

  62. S. Dey, V. Hussin, Phys. Rev. A 93, 053824 (2016)

    Article  ADS  Google Scholar 

  63. F. Li, X. Li, D.L. Lin, T.F. George, Phys. Rev. A 45, 3133–3138 (1992)

    Article  ADS  Google Scholar 

  64. S.L. Braunstein, A. Mann, M. Revzen, Phys. Rev. Lett. 68, 3259–3261 (1992)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fakhri.

Appendix A: q-exponential functions and q-integral representations of the q-factorial

Appendix A: q-exponential functions and q-integral representations of the q-factorial

For a fixed parameter q, the two different generalizations of exponential function are defined as [42]

$$\begin{aligned}&{E_q(x)}:=\sum _{n=0}^{\infty }\frac{q^\frac{n(n-1)}{2}}{(q;q)_n}{x^n}, \end{aligned}$$
(A1a)
$$\begin{aligned}&{e_q(x)}:=\sum _{n=0}^{\infty }\frac{x^n}{(q;q)_n}, \end{aligned}$$
(A1b)

where \({(a;q)_n:=(1-a)(1-aq)(1-aq^2)\cdots (1-aq^{n-1})}\). The convergence regions of the q-exponential functions for \(0<q<1\) are \(|x|<\infty \) and \(|x|<1\), respectively. The relation \({e_q(x)}{E_q(-x)}=1\) and the classical limits \(\lim _{q\rightarrow 1} {e_q((1-q)x)}=exp(x)\) and \(\lim _{q\rightarrow 1}{E_q((1-q)x)}=exp(x)\) are readily derived from (A1a) and (A1b). Furthermore, in the case \(|q|<1\), there exists an infinite product expansion as follows [46]

$$\begin{aligned} e_{q}(x)=\frac{1}{\prod _{k=0}^\infty (1-q^{k} x)}. \end{aligned}$$
(A2)

Let us assume that f(x) and g(x) are two arbitrary and continuous functions on the real line. The symmetric and asymmetric q-derivatives \(\widetilde{D}_{q,x}\) and \(D_{q,x}\) are defined as [42]

$$\begin{aligned}&\widetilde{D}_{q,x}f(x):=\frac{f(q x)-f(q^{-1}x)}{(q-q^{-1})x},&\end{aligned}$$
(A3a)
$$\begin{aligned}&D_{q,x}f(x)=\frac{f(x)-f(qx)}{(1-q)x},&\end{aligned}$$
(A3b)

with the following q-analogues for the Leibniz rule:

$$\begin{aligned}&\widetilde{D}_{q,x}(f(x) g(x))=(\widetilde{D}_{q,x}f(x))\,g(q^{-1}x)+f(q x)\,\widetilde{D}_{q,x}g(x),&\end{aligned}$$
(A4a)
$$\begin{aligned}&{D_{q,x}}(f(x) g(x))=({D_{q,x}}f(x))\, g(qx)+f(x)\,D_{q,x}g(x).&\end{aligned}$$
(A4b)

Being the inverse operations of the q-derivatives \(\widetilde{D}_{q,x}\) and \({D_{q,x}}\), the q-integrals on the intervals \([0,\infty )\) and [0, c] with c as a positive real number are defined as [41, 46]

$$\begin{aligned}&\int _0^{\infty }f(x)\widetilde{d_q}x=(q^{-1}-q)\sum _{j=-\infty }^{\infty }q^{2j+1}f(q^{2j+1}),&\end{aligned}$$
(A5a)
$$\begin{aligned}&\int _{0}^{c}f(x)d_{q}x:=(1-q)c\sum _{j=0}^{\infty }q^j{f(q^j{c})}.&\end{aligned}$$
(A5b)

For any nonzero complex number n, a q-number as \([n]_q:=\frac{1-q^n}{1-q}\) is associated. Also, the q-factorial is defined as \([0]_q!=1\) and \([n]_q!:=[1]_q [2]_q \cdots [n]_q\) for n as a positive integer number. For \(0<q<1\), the following infinite and finite integral representations are obtained by the above definitions for the q- and \(q^2\)-factorials, respectively [40, 41, 46, 47]

$$\begin{aligned}&\int _{0}^{\infty }\frac{x^n}{E_{q^2}((q^{-1}-q)x)}\widetilde{d}_{q}x=q^{-n^2}[n]_{q^2}!,&\end{aligned}$$
(A6a)
$$\begin{aligned}&\int _{0}^{\frac{1}{1-q}}\frac{x^n}{{e_q}((1-q)x)}d_{q}x=[n]_q!.&\end{aligned}$$
(A6b)

We call the attention of the reader to an important issue: quantum number introduced in [46] is symmetric, and to obtain integral relation (A6a), one should write it in terms of the asymmetric quantum number used in this article. Both of the q-integrals convert to the infinite integral representation of the ordinary factorial as \(q\rightarrow 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, H., Mousavi-Gharalari, S.E. Nonclassical properties of two families of q-coherent states in the Fock representation space of q-oscillator algebra. Eur. Phys. J. Plus 135, 253 (2020). https://doi.org/10.1140/epjp/s13360-020-00265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00265-3

Navigation