Skip to main content
Log in

Study of the radial Schrödinger equation with external magnetic and AB flux fields by the extended Nikiforov–Uvarov method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Applicability of the extended Nikiforov–Uvarov method in order to obtain eigenstate solutions of the radial Schrödinger equation in the presence of external magnetic field and Aharonov–Bohm (AB) flux fields is investigated. This study includes two analytical solutions of two different physical problems: solution of the non-relativistic wave equation for radial scalar power potential and solution for a charged particle with position-dependent mass interacted via Morse plus Coulomb potential under the influence of external magnetic field and AB flux fields. Wave function solutions for each case are achieved in terms of biconfluent Heun polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Boston, 1988)

    Book  Google Scholar 

  2. M.R. Pahlavani, Theoretical Concepts of Quantum Mechanics (Rijeka, Croatia, 2012)

    Book  Google Scholar 

  3. H. Egrifes, D. Demirhan, F. Buyukkilic, Phys. Scr. 59, 90 (1999)

    Article  ADS  Google Scholar 

  4. F. Iacob, M. Lute, J. Math. Phys. 56, 121501 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Karayer, D. Demirhan, F. Buyukkilic, J. Math. Phys. 56, 063504 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Karayer, D. Demirhan, F. Buyukkilic, Rep. Math. Phys. 76, 271–281 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Ronveaux, Heun’s Differential Equations (Oxford University Press, New York, 1995)

    MATH  Google Scholar 

  8. S. Bellucci, V. Yeghikyan, J. Math. Phys. 54, 082103 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. W.D. Li, W.S. Dai, Ann. Phys. 373, 207–215 (2016)

    Article  ADS  Google Scholar 

  10. E.M. Ovsiyuk, O. Veka, M. Amirfachrian, Nonlinear Phenom. Complex Syst. 373, 2 (2012)

    Google Scholar 

  11. Y.Z. Zhang, J. Phys. A Math. Theor. 45, 065206 (2012)

    Article  ADS  Google Scholar 

  12. C.A. Downing, J. Math. Phys. 54, 072101 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Caruso, J. Martins, V. Oguri, Ann. Phys. 347, 130 (2014)

    Article  ADS  Google Scholar 

  14. H. Karayer, D. Demirhan, F. Buyukkilic, J. Math. Phys. 59, 053501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Eshghi, H. Mehreban, Eur. Phys. J. Plus 132, 121 (2017)

    Article  Google Scholar 

  16. S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Ann. Phys. 353, 282–298 (2015)

    Article  ADS  Google Scholar 

  17. H.R. Christiansen, M.S. Cunha, J. Math. Phys. 54, 122108 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. S.M. Ikhdair, M. Hamzavi, Physica B Condens. Matter 407(21), 4198–4207 (2012)

    Article  ADS  Google Scholar 

  19. M. Eshghi, H. Mehreban, S.M. Ikhdair, Chin. Phys. B 26(6), 060302 (2017)

    Article  ADS  Google Scholar 

  20. D. Yu, P. Ghosh, R.Q. Snurr, Dalton Trans. 41, 3962 (2012)

    Article  Google Scholar 

  21. H. Karayer, Eur. Phys. J. Plus 134, 452 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by The Scientific and Technological Research Council of Turkey with the Grant Number 118F245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hale Karayer.

Appendix: Extended Nikiforov–Uvarov method

Appendix: Extended Nikiforov–Uvarov method

In order to expand number of soluble potentials for relativistic or non-relativistic wave equations, the boundary conditions of the NU method are changed and extended form of the NU method is derived [5]. Thereby a second-order differential equation which has at most four singular points can be solved analytically by using extended NU method. To apply the extended NU method, one writes any second-order differential equation in the generalized form namely the basic equation of the method:

$$\begin{aligned} \psi ''(z)+\frac{{\widetilde{\tau }}_\mathrm{ex}(z)}{\sigma _\mathrm{ex}(z)}\psi '(z)+\frac{{\widetilde{\sigma }}_\mathrm{ex}(z)}{\sigma _\mathrm{ex}^{2}(z)}\psi (z)=0, \end{aligned}$$
(45)

where the subscript ex stands for extended. The coefficients in the basic equation must have certain degrees namely \({\widetilde{\tau }}_\mathrm{ex}(z)\) is a polynomial of at most second degree, \(\sigma _\mathrm{ex}(z)\) is a polynomial of at most third degree and \({\widetilde{\sigma }}_\mathrm{ex}(z)\) is a polynomial of at most fourth degree [5, 6, 14, 21]. To find the particular solution of the basic equation, Eq. (45) is reduced to the following differential equation:

$$\begin{aligned} \sigma _\mathrm{ex}(z)y''(z)+\tau _\mathrm{ex}(z)y'(z)+h(z)y(z)=0, \end{aligned}$$
(46)

by using the transformation:

$$\begin{aligned} \psi (z)=\phi _\mathrm{ex}(z)y(z). \end{aligned}$$
(47)

Equation (46) has a particular polynomial solution of the form \( y(z)=y_{n}(z) \) and the function \(\phi _\mathrm{ex}(z)\) is given as a logarithmic derivative:

$$\begin{aligned} \frac{\phi '_\mathrm{ex}(z)}{\phi _\mathrm{ex}(z)}=\frac{\pi (z)}{\sigma (z)}. \end{aligned}$$
(48)

The polynomials \(\tau _\mathrm{ex}(z)\), \(\pi _\mathrm{ex}(z)\) and h(z) arising in the procedure of reducing the basic equation of the method to Eq. (46) are defined as:

$$\begin{aligned} \tau _\mathrm{ex}(z)= & {} {\widetilde{\tau }}_\mathrm{ex}(z)+2\pi _\mathrm{ex}(z), \end{aligned}$$
(49)
$$\begin{aligned} \pi _\mathrm{ex}(z)= & {} \frac{\sigma _\mathrm{ex}'(z)-{\widetilde{\tau }}_\mathrm{ex}(z)}{2}\pm \sqrt{\left( \frac{\sigma _\mathrm{ex}'(z)-{\widetilde{\tau }}_\mathrm{ex}(z)}{2}\right) ^{2}-{\widetilde{\sigma }}_\mathrm{ex}(z)+g(z)\sigma _\mathrm{ex}(z)}, \end{aligned}$$
(50)
$$\begin{aligned} h(z)= & {} g(z)+\pi _\mathrm{ex}'(z). \end{aligned}$$
(51)

According to the condition that the polynomial \(\pi _\mathrm{ex}(z)\) is at most second degree, the polynomial g(z) must be chosen properly. After determination of the polynomial g(z), all newly defined polynomials can be achieved by using Eqs. (50),  (51) and (49). Eigenvalue equation can be set up by taking:

$$\begin{aligned} h(z)=h_{n}(z)=-\frac{n}{2}\tau _\mathrm{ex}'(z)-\frac{n(n-1)}{6}\sigma _\mathrm{ex}''(z)+C_{n}, \end{aligned}$$
(52)

where \(C_{n}\) is an integration constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karayer, H. Study of the radial Schrödinger equation with external magnetic and AB flux fields by the extended Nikiforov–Uvarov method. Eur. Phys. J. Plus 135, 70 (2020). https://doi.org/10.1140/epjp/s13360-020-00131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00131-2

Navigation