Skip to main content
Log in

Possible non-additive entropy based on the \(\alpha \)-deformed addition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We reexamine the non-additive entropy which was first proposed by Tsallis [1] where this deformed entropy (q-entropy) is related to a special map. We consider a new map giving the \(\alpha \)-additive property. Based on this, we propose a new type of non-additive entropy which we call \(\alpha \)-entropy and derive the \(\alpha \)-deformed Boltzmann factor and \(\alpha \)-deformed free energy. As an example, we discuss the black body radiation in the \(\alpha \)-deformed thermodynamics where we regard photon as a particle obeying \(\alpha \)-deformed boson algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  2. E. Curado, C. Tsallis, J. Phys. A 24, L69 (1991)

    Article  ADS  Google Scholar 

  3. E. Curado, C. Tsallis, J. Phys. A 25, 1019(E) (1991)

    Article  Google Scholar 

  4. J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)

    Article  ADS  Google Scholar 

  5. E. Megías, D. Menezes, A. Deppman, Phys. A 421, 15 (2015)

    Article  Google Scholar 

  6. Débora P. Menezes, A. Deppman, E. Megias, L. Castro, Eur. Phys. J. A 51, 155 (2015)

    Article  ADS  Google Scholar 

  7. A. Wehrl, Rev. Mod. Phys. 50, 221 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Havrda, F. Charvát, Kybernetika 3, 30 (1967)

    MathSciNet  Google Scholar 

  9. Z. Daroczy, Inf. Control 16, 36 (1970)

    Article  Google Scholar 

  10. C. Tsallis, R.S. Mendes, A.R. Plastino, Phys. A 261, 534 (1998)

    Article  Google Scholar 

  11. A. Plastino, A.R. Plastino, Phys. Lett. A 226, 257 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  12. A.S. Parvan, Phys. Lett. A 360, 26 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. E.M.F. Curado, C. Tsallis, J. Phys. A 25, 1019 (1992)

    Article  MathSciNet  Google Scholar 

  14. L. Nivanen, A. Le Mehaute, Q. Wang, Rep. Math. Phys. 52, 437 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Borges, Phys. A 340, 95 (2004)

    Article  MathSciNet  Google Scholar 

  16. G. Viktor, Int. J. Mod. Phys. D 24, 1542015 (2015)

    Article  Google Scholar 

  17. G. Viktor, H. Iguchi, Universe 3, 14 (2017). https://doi.org/10.3390/universe3010014

    Article  ADS  Google Scholar 

  18. A. Scarfone, Entropy 15, 624 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Tempesta, Phys. Rev. E 84, 021121 (2011)

    Article  ADS  Google Scholar 

  20. W. Chung, H. Hassanabadi, Mod. Phys. Lett. B 33, 1950368 (2019)

    Article  ADS  Google Scholar 

  21. V. Ilić, M. Stanković, Phys. A 411, 138 (2014)

    Article  MathSciNet  Google Scholar 

  22. M. Czachor, J. Naudts, Phys. Lett. A 298, 369 (2002)

    Article  ADS  Google Scholar 

  23. A. Kolmogorov, Atti della R. Accademia Nazionale dei Lincei 12, 388 (1930)

    Google Scholar 

  24. M. Nagumo, Jpn. Journ. Math. 7, 71 (1930)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hassanabadi.

Appendix A

Appendix A

If we replace \(t=\beta h \nu \) in Eq. (145), we have:

$$\begin{aligned} {{{\mathcal {E}}}} (T) = \frac{ 8 \pi k^4 }{c^3 h^3 } T^4 J_{\alpha }, \end{aligned}$$
(151)

where

$$\begin{aligned} J_{\alpha } = \int _0^{\infty } dt \frac{ t^3}{ ( e^{ t^{\alpha }}. -1)^{1/\alpha } } \end{aligned}$$
(152)

Using Taylor expansion, we have:

$$\begin{aligned} J_{\alpha } =\frac{1}{\alpha } \sum _{n=0}^{\infty } \frac{ \left( \frac{1}{\alpha } \right) _n \Gamma \left( \frac{4}{\alpha } \right) }{ n! \left( \frac{1}{\alpha } +n \right) ^{4/\alpha } }, \end{aligned}$$
(153)

where \((a)_n\) denotes Pochhammer symbol. If we set \(\alpha = 1 + \epsilon \) for small \(\epsilon \), we can use the following approximation formulas:

$$\begin{aligned} \Gamma \left( \frac{4}{\alpha } \right)\approx & {} 1 + \gamma \epsilon \end{aligned}$$
(154)
$$\begin{aligned} \left( \frac{1}{\alpha } +n \right) ^{-4/\alpha }\approx & {} \frac{1}{(n+1)^4 } \left[ 1 + 4 \epsilon \left( \ln ( 1 + n ) + \frac{1}{1+n} \right) \right] \end{aligned}$$
(155)
$$\begin{aligned} \left( \frac{1}{\alpha } \right) _n\approx & {} n! \left( 1 - \epsilon H(n) \right) , \end{aligned}$$
(156)

where H(n) is harmonic number defined by:

$$\begin{aligned} H(n) = \sum _{k=1}^n \frac{1}{k}, \end{aligned}$$
(157)

and \(\gamma \) is Euler constant. Using these, up to a first order in \(\epsilon \), we have:

$$\begin{aligned} J_{\alpha } \approx \zeta (4) + \epsilon \left( \gamma -1 + \frac{\pi ^2}{6} \zeta (3) + 2 \zeta (5) - 4 \zeta ' (4) ) \right) . \end{aligned}$$
(158)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, W.S., Hassanabadi, H. Possible non-additive entropy based on the \(\alpha \)-deformed addition. Eur. Phys. J. Plus 135, 19 (2020). https://doi.org/10.1140/epjp/s13360-019-00047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00047-6

Navigation