Skip to main content
Log in

A novel technique to construct exact solutions for nonlinear partial differential equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The aim of the manuscript is to present a new exact solver of nonlinear partial differential equations. The proposed technique is developed by extending the \( \phi^{6}\)-model expansion method as a known method. The corresponding exact solutions are given in terms of Jacobi elliptic functions. Some new optical solutions of the resonant nonlinear Schrödinger equation are constructed within this newly proposed method. For some specific choices of the modulus of Jacobi elliptic functions, various solutions of the equation are introduced. Some numerical simulations are also included to emphasize that all parameters have major influences for the solitary waves behaviours. The proposed technique is very simple and straightforward, and can be employed to solve other non-linear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Biswas, Y. Yildirim, E. Yasar, H. Triki, A.S. Alshomrani, M.Z. Ullah, Q. Zhou, S.P. Moshokoa, M. Belic, Optik 158, 399 (2018)

    ADS  Google Scholar 

  2. M.S. Osman, H.I. Abdel-Gawad, M.A. El Mahdy, Results Phys. 8, 1054 (2018)

    ADS  Google Scholar 

  3. M.S. Osman, Optik 156, 169 (2018)

    ADS  Google Scholar 

  4. F. Gao, X.-J. Yang, H.M. Srivastava, Therm. Sci. 21, 2307 (2017)

    Google Scholar 

  5. X.-J. Yang, J.A.T. Machado, D. Baleanu, C. Cattani, Chaos 26, 084312 (2016)

    ADS  MathSciNet  Google Scholar 

  6. X.-J. Yang, F. Gao, H.M. Srivastava, Comput. Math. Appl. 73, 203 (2017)

    MathSciNet  Google Scholar 

  7. X.-J. Yang, J.T. Machado, D. Baleanu, Fractals 25, 1740006 (2017)

    ADS  MathSciNet  Google Scholar 

  8. X.-J. Yang, F. Gao, H.M. Srivastava, J. Comput. Appl. Math. 339, 285 (2018)

    MathSciNet  Google Scholar 

  9. X.-J. Yang, F. Gao, Therm. Sci. 21, 133 (2017)

    Google Scholar 

  10. X.-J. Yang, Therm. Sci. 21, S79 (2017)

    Google Scholar 

  11. X.-J. Yang, Appl. Math. Lett. 64, 193 (2017)

    MathSciNet  Google Scholar 

  12. X.-J. Yang, F. Gao, Therm. Sci. 21, 133 (2017)

    Google Scholar 

  13. Y. Yugui, Y. Xiaojun, Z. Mingzheng, C. Cattani, Therm. Sci. 21, S129 (2017)

    Google Scholar 

  14. A.I. Aliyu, M. Inc, A. Yusuf, D. Baleanu, Mod. Phys. Lett. B 32, 1850373 (2018)

    ADS  Google Scholar 

  15. A.I. Aliyu, M. Inc, A. Yusuf, D. Baleanu, Commun. Theor. Phys. 70, 511 (2018)

    ADS  Google Scholar 

  16. A.I. Aliyu, M. Inc, Symmetry 10, 341 (2018)

    Google Scholar 

  17. M. Inc, A.I. Aliyu, A. Yusuf, D. Baleanu, Mod. Phys. Lett. B 32, 1850202 (2018)

    ADS  Google Scholar 

  18. A. Yusuf, A.I. Aliyu, M.S. Hashemi, Eur. Phys. J. Plus 133, 168 (2018)

    Google Scholar 

  19. D. Baleanu, M. Inc, A. Yusuf, A.I. Aliyu, Open Phys. 16, 302 (2018)

    Google Scholar 

  20. Q. Zhou, X. Xiong, Q. Zhu, Y. Liu, H. Yu, P. Yao, A. Biswas, M. Belic, J. Optoelectron. Adv. Mater. 17, 82 (2015)

    Google Scholar 

  21. E.M.E. Zayed, Abdul-Ghani Al-Nowehy, Optik 143, 84 (2017)

    ADS  Google Scholar 

  22. E.M.E. Zayed, Abdul-Ghani Al-Nowehy, Eur. Phys. J. Plus 132, 475 (2017)

    Google Scholar 

  23. E.M.E. Zayed, Abdul-Ghani Al-Nowehy, Opt. Quantum Electron. 50, 164 (2018)

    Google Scholar 

  24. B. Ghanbari, M. Inc, Eur. Phys. J. Plus 133, 142 (2018)

    Google Scholar 

  25. M.S. Osman, B. Ghanbari, Optik 175, 328 (2018)

    ADS  Google Scholar 

  26. B. Ghanbari, N. Raza, Mod. Phys. Lett. B 33, 1950018 (2019)

    ADS  Google Scholar 

  27. M.S. Osman, Behzad Ghanbari, J.A.T. Machado, Eur. Phys. J. Plus 134, 20 (2019)

    Google Scholar 

  28. B. Ghanbari, A. Yusuf, M. Inc, D. Baleanu, Adv. Differ. Equ. 2019, 49 (2019)

    Google Scholar 

  29. B. Ghanbari, Mod. Phys. Lett. B 33, 1950106 (2019)

    ADS  Google Scholar 

  30. B. Ghanbari, A. Yusuf, M. Inc, D. Baleanu, Adv. Differ. Equ. 2019, 49 (2019)

    Google Scholar 

  31. B. Ghanbari, M.S. Osman, D. Baleanu, Mod. Phys. Lett. A 34, 1950155 (2019)

    ADS  Google Scholar 

  32. M.S. Osman, B. Ghanbari, J.A.T. Machado, Eur. Phys. J. Plus 134, 20 (2019)

    Google Scholar 

  33. B. Ghanbari, D. Baleanu, M.A. Qurashi, Symmetry 11, 1 (2019)

    Google Scholar 

  34. B. Ghanbari, M. Inc, L. Rada, J. Appl. Anal. Comput. 9, 1 (2019)

    MathSciNet  Google Scholar 

  35. J.G. Liu, Y. He, Nonlinear Dyn. 92, 1103 (2018)

    Google Scholar 

  36. J.G. Liu, J.Q. Du, Z.F. Zeng, B. Nie, Nonlinear Dyn. 88, 655 (2017)

    Google Scholar 

  37. J.G. Liu, J.Q. Du, Z.F. Zeng, G.P. Ai, Chaos 26, 103114 (2016)

    ADS  MathSciNet  Google Scholar 

  38. H.M. Baskonus, Nonlinear Dyn. 86, 177 (2016)

    MathSciNet  Google Scholar 

  39. H.M. Baskonus, AIP Conf. Proc. 1798, 020018 (2017)

    Google Scholar 

  40. G. Yel, H.M. Baskonus, H. Bulut, Opt. Quantum Electron. 49, 1 (2017)

    Google Scholar 

  41. A. Ciancio, H.M. Baskonus, T.A. Sulaiman, H. Bulut, Indian J. Phys. 92, 1281 (2018)

    ADS  Google Scholar 

  42. C. Cattani, T.A. Sulaiman, H.M. Baskonus, H. Bulut, Opt. Quantum Electron. 50, 138 (2018)

    Google Scholar 

  43. C. Cattani, T.A. Sulaiman, H.M. Baskonus, H. Bulut, Eur. Phys. J. Plus 133, 288 (2018)

    Google Scholar 

  44. Haci Mehmet Baskonus, Axioms 8, 18 (2019)

    Google Scholar 

  45. S.M. El-Shaboury, M.K. Ammar, W.M. Yousef, Appl. Math. Nonlinear Sci. 2, 403 (2017)

    MathSciNet  Google Scholar 

  46. P.K. Pandey, Appl. Math. Nonlinear Sci. 3, 649 (2018)

    MathSciNet  Google Scholar 

  47. E.I. Eskitascoglu, M.B. Akta, H.M. Baskonus, Appl. Math. Nonlinear Sci. 4, 93 (2019)

    Google Scholar 

  48. H.M. Baskonus, H. Bulut, T.A. Sulaiman, Appl. Math. Nonlinear Sci. 4, 129 (2019)

    Google Scholar 

  49. M. Dewasurendra, K. Vajravelu, Appl. Math. Nonlinear Sci. 3, 114 (2018)

    Google Scholar 

  50. T. Caraballo, M. Herrera-Cobos, P. Marin-Rubio, Appl. Math. Nonlinear Sci. 2, 73 (2017)

    MathSciNet  Google Scholar 

  51. E.M.E. Zayed, K.A.E. Alurrfi, Appl. Math. Comput. 289, 111 (2016)

    MathSciNet  Google Scholar 

  52. E.M.E. Zayed, Abdul-Ghani Al-Nowehy, Optik 130, 1295 (2017)

    ADS  Google Scholar 

  53. E.M.E. Zayed, R.M.A. Shohib, Optik 158, 970 (2018)

    ADS  Google Scholar 

  54. E.M.E. Zayed, A.-G. Al-Nowehy, M.E.M. Elshater, Eur. Phys. J. Plus 133, 417 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, B., Baleanu, D. A novel technique to construct exact solutions for nonlinear partial differential equations. Eur. Phys. J. Plus 134, 506 (2019). https://doi.org/10.1140/epjp/i2019-13037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-13037-9

Navigation