Skip to main content
Log in

Double pipe heat exchanger temperatures estimation using fractional observers

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work presents a high-gain fractional observers (HGFO) design in the Atangana-Baleanu-Caputo (ABC) sense applied to heat transfer process in specific to a condenser device. The aim of the HGFOs is to achieve the best outlet temperatures estimation as well as both fluid temperatures dynamics using different values of the derivative order, and using only one measured temperature for the observer design; therefore, for this purpose, two high-gain fractional observers were designed: one uses the outlet temperature of the cooling fluid and the other uses the outlet temperature of the condensed fluid. Simulations results carried out using experimental temperatures show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Sun, R.-J. Xue, M.-J. Peng, Ann. Nucl. Energy 113, 37 (2018)

    Google Scholar 

  2. R.F. Escobar-Jiménez, D.A. Carbot-Rojas, J.F. Gómez-Aguilar, V.M. Alvarado-Martínez, A.C. Téllez-Anguiano, J.A. Hernández-Pérez, Chem. Eng. Commun. 204, 86 (2017)

    Google Scholar 

  3. M.A. Castro-López, R.F. Escobar, L. Torres, J.F. Gómez-Aguilar, J.A. Hernández-Perez, V.H. Olivares-Peregrino, ISA Trans. 65, 456 (2016)

    Google Scholar 

  4. D. Carbot-Rojas, R.F. Escobar, J.F. Gómez-Aguilar, G. López-López, V.H. Olivares-Peregrino, Chem. Eng. Res. Design 104, 400 (2015)

    Google Scholar 

  5. R.F. Escobar, C.M. Astorga-Zaragoza, A. Téllez-Anguiano, J.A. Hernández-Pérez, G. Guerrero-Ramírez, ISA Trans. 50, 480 (2011)

    Google Scholar 

  6. A. Mondol, R. Gupta, S. Das, T. Dutta, J. Appl. Phys. 123, 064901 (2018)

    ADS  Google Scholar 

  7. R.L. Bagley, P. Torvik, J. Rheol. 27, 201 (1983)

    ADS  Google Scholar 

  8. E. Bas, R. Ozarslan, Chaos, Solitons Fractals 116, 121 (2018)

    ADS  MathSciNet  Google Scholar 

  9. R. Martínez-Guerra, C.A. Pérez-Pinacho, Estimators for a class of commensurate fractional-order systems with Caputo derivative, in Advances in Synchronization of Coupled Fractional Order Systems (Springer, 2018) pp. 71--83

  10. J. Wang, C. Shao, Y.-Q. Chen, Mechatronics 53, 8 (2018)

    Google Scholar 

  11. M. Alegría-Zamudio, R.F. Escobar-Jiménez, J.F. Gómez-Aguilar, ISA Trans. 80, 286 (2018)

    Google Scholar 

  12. J.E. Solís-Pérez, J.F. Góomez-Aguilar, L. Torres, R. Escobar-Jiménez, J. Reyes-Reyes, ISA Trans. 89, 153 (2019)

    Google Scholar 

  13. A. Coronel-Escamilla, J.F. Gómez-Aguilar, L. Torres, R. Escobar-Jiménez, V. Olivares-Peregrino, ISA Trans. 82, 30 (2018)

    Google Scholar 

  14. A. Khan, A. Tyagi, AEU Int. J. Electron. Commun. 82, 346 (2017)

    Google Scholar 

  15. R. Martínez-Guerra, C.D. Cruz-Ancona, C.A. Pérez-Pinacho, Estimators for a class of commensurate fractional order systems with Caputo derivative, in 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (IEEE, 2017) pp. 1--6, https://doi.org/ICEEE.2017.8108898

  16. F. Zhong, H. Li, S. Zhong, Signal Process. 127, 168 (2016)

    Google Scholar 

  17. C. Li, G. Chen, Physica A 341, 55 (2004)

    ADS  MathSciNet  Google Scholar 

  18. J. Singh, Chaos 29, 013137 (2019)

    ADS  MathSciNet  Google Scholar 

  19. D. Kumar, J. Singh, D. Baleanu, Eur. Phys. J. Plus 133, 70 (2018)

    Google Scholar 

  20. D. Kumar, J. Singh, D. Baleanu, Therm. Sci. 22, 2791 (2017)

    Google Scholar 

  21. J. Singh, D. Kumar, D. Baleanu, S. Rathore, Appl. Math. Comput. 335, 12 (2018)

    MathSciNet  Google Scholar 

  22. J. Singh, D. Kumar, D. Baleanu, S. Rathore, Math. Methods Appl. Sci. 1, 1 (2019)

    Google Scholar 

  23. J. Singh, D. Kumar, D. Baleanu, Math. Model. Nat. Phenom. 14, 1 (2019)

    Google Scholar 

  24. J. Singh, D. Kumar, D. Baleanu, S. Rathore, Eur. Phys. J. Plus 133, 259 (2018)

    Google Scholar 

  25. J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)

    MathSciNet  Google Scholar 

  26. D. Kumar, R. Agarwal, J. Singh, J. Comput. Appl. Math. 339, 405 (2018)

    MathSciNet  Google Scholar 

  27. D. Kumar, F. Tchier, J. Singh, D. Baleanu, Entropy 20, 1 (2018)

    Google Scholar 

  28. A. Atangana, J. Comput. Phys. 293, 104 (2015)

    ADS  MathSciNet  Google Scholar 

  29. R. Almeida, Numer. Funct. Anal. Optim. 38, 1 (2017)

    MathSciNet  Google Scholar 

  30. B.P. Moghaddam, S. Yaghoobi, J.T. Machado, J. Comput. Nonlinear Dyn. 11, 1 (2016)

    Google Scholar 

  31. C.J. Zúñiga-Aguilar, H.M. Romero-Ugalde, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, M. Valtierra-Rodríguez, Chaos, Solitons Fractals 103, 382 (2017)

    ADS  MathSciNet  Google Scholar 

  32. A. Dabiri, E.A. Butcher, Appl. Math. Model. 56, 424 (2018)

    MathSciNet  Google Scholar 

  33. R. Chen, F. Liu, V. Anh, J. Comput. Appl. Math. 352, 437 (2019)

    MathSciNet  Google Scholar 

  34. R. Meng, D. Yin, C.S. Drapaca, Comput. Mech. 1, 1 (2019)

    Google Scholar 

  35. D. Yin, P. Qu, Physica A 492, 707 (2018)

    ADS  MathSciNet  Google Scholar 

  36. L. Ramirez, C. Coimbra, Physica D 240, 1111 (2011)

    ADS  MathSciNet  Google Scholar 

  37. H.G. Sun, Y. Zhang, W. Chen, D.M. Reeves, J. Contam. Hydrol. 157, 47 (2014)

    ADS  Google Scholar 

  38. X.J. Yang, Therm. Sci. 21, 1161 (2017)

    Google Scholar 

  39. M.H. Heydari, Z. Avazzadeh, M.F. Haromi, Appl. Math. Comput. 341, 215 (2019)

    MathSciNet  Google Scholar 

  40. H. Hassani, E. Naraghirad, Math. Comput. Simul. 1, 1 (2019)

    Google Scholar 

  41. A.H. Bhrawy, M.A. Zaky, Nonlinear Dyn. 80, 101 (2016)

    Google Scholar 

  42. A.H. Bhrawy, M.A. Zaky, Appl. Numer. Math. 111, 197 (2017)

    MathSciNet  Google Scholar 

  43. Y.M. Chen, Y.Q. Wei, D.Y. Liu, D. Boutat, X.K. Chen, J. Comput. Phys. 311, 338 (2016)

    ADS  MathSciNet  Google Scholar 

  44. X. Zhao, Z.Z. Sun, G.E. Karniadakis, J. Comput. Phys. 293, 184 (2015)

    ADS  MathSciNet  Google Scholar 

  45. A. Dabiri, B.P. Moghaddam, J.T. Machado, J. Comput. Appl. Math. 339, 40 (2018)

    MathSciNet  Google Scholar 

  46. M. Toufik, A. Atangana, Eur. Phys. J. Plus 132, 444 (2017)

    Google Scholar 

  47. J.E. Solís-Pérez, J.F. Gómez-Aguilar, A. Atangana, Chaos, Solitons Fractals 114, 175 (2018)

    ADS  MathSciNet  Google Scholar 

  48. D. Colorado, J. Hernández, O. García-Valladares, A. Huicochea, J. Siqueiros, Appl. Energy 88, 2136 (2011)

    Google Scholar 

  49. L. Guo, Z. Feng, X. Chen, Int. J. Heat Mass Transfer 44, 2601 (2001)

    Google Scholar 

  50. A. Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. F. Escobar-Jiménez.

Additional information

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alegria-Zamudio, M., Escobar-Jiménez, R.F., Gómez-Aguilar, J.F. et al. Double pipe heat exchanger temperatures estimation using fractional observers. Eur. Phys. J. Plus 134, 496 (2019). https://doi.org/10.1140/epjp/i2019-12939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12939-8

Navigation