Skip to main content
Log in

New solutions for graphene with scalar potentials by means of generalized intertwining

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The intertwining relations between superpartner Hamiltonians are the main ingredients of well-known Supersymmetrical Quantum Mechanics (SUSY QM). In the present paper, the generalized form of intertwining is used for the investigation of a massless (zero energy) two-dimensional Dirac equation with scalar external potential. This equation is related to the description of graphene and some other materials in the field of external electrostatic potential. The use of modified intertwining relations allows to find analytically solutions for the wave functions in the field of some external scalar potentials which depend on both space coordinates. A few examples of this construction are given explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Witten, Nucl. Phys. B 188, 513 (1981)

    ADS  Google Scholar 

  2. G. Darboux, Comptes Rendus 94, 1456 (1882)

    Google Scholar 

  3. M. Crum, Quart. J. Math. 6, 121 (1955)

    ADS  MathSciNet  Google Scholar 

  4. E. Schrödinger, Proc. R. Irish Acad. A 46, 9 (1940)

    Google Scholar 

  5. L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)

    ADS  Google Scholar 

  6. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    ADS  MathSciNet  Google Scholar 

  7. B.K. Bagchi, Supersymmetry in Quantum and Classical Mechanics (Chapman, Boca Raton, 2001)

  8. D.J. Fernández C., AIP Conf. Proc. 1287, 3 (2010)

    ADS  Google Scholar 

  9. A.A. Andrianov, M.V. Ioffe, J. Phys. A 45, 503001 (2012)

    MathSciNet  Google Scholar 

  10. D.J. Fernández C., Trends in supersymmetric quantum mechanics, in Integrability, Supersymmetry and Coherent States, edited by Ş. Kury, J. Negro, L. Nieto, CRM Series in Physics (Springer, Cham) pp. 37--68, arXiv:1811.06449

  11. A.A. Andrianov, N.V. Borisov, M.V. Ioffe, Sov. Phys. JETP Lett. 39, 93 (1984)

    ADS  Google Scholar 

  12. V.A. Kostelecky, M.M. Nieto, Phys. Rev. Lett. 53, 2285 (1984)

    ADS  Google Scholar 

  13. D.K.C.A. Comtet, A. Bandrauk, Phys. Lett. B 150, 159 (1985)

    ADS  MathSciNet  Google Scholar 

  14. A.A. Andrianov, M.V. Ioffe, Phys. Lett. B 255, 543 (1991)

    ADS  MathSciNet  Google Scholar 

  15. E. Gozzi, M. Reuter, W.D. Thacker, Phys. Lett. A 183, 29 (1993)

    ADS  Google Scholar 

  16. A.A. Andrianov, F. Cannata, D.N. Nishnianidze, M.V. Ioffe, J. Phys. A 30, 5037 (1997)

    ADS  MathSciNet  Google Scholar 

  17. A.A. Andrianov, F. Cannata, J.-P. Dedonder, M.V. Ioffe, Int. J. Mod. Phys. A 14, 2675 (1999)

    ADS  Google Scholar 

  18. F. Cannata, M. Ioffe, G. Junker, D. Nishnianidze, J. Phys. A 32, 3583 (1999)

    ADS  MathSciNet  Google Scholar 

  19. F. Cannata, M.V. Ioffe, A.I. Neelov, D.N. Nishnianidze, J. Phys. A 37, 10339 (2004)

    ADS  MathSciNet  Google Scholar 

  20. M.V. Ioffe, S. Kuru, J. Negro, L.M. Nieto, J. Phys. A 39, 6987 (2006)

    ADS  MathSciNet  Google Scholar 

  21. A.A. Andrianov, F. Cannata, J.-P. Dedonder, M.V. Ioffe, Int. J. Mod. Phys. A 10, 2683 (1995)

    ADS  Google Scholar 

  22. L.M. Nieto, A.A. Pecheritsin, B.F. Samsonov, Ann. Phys. 305, 151 (2003)

    ADS  Google Scholar 

  23. E. Shemyakova, SIGMA 9, 002 (2013)

    MathSciNet  Google Scholar 

  24. D. Hobby, E. Shemyakova, SIGMA 13, 010 (2017)

    Google Scholar 

  25. K.S. Novoselov et al., Nature 438, 197 (2005)

    ADS  Google Scholar 

  26. M.I. Katsnelson, Mater. Today 10, 20 (2007)

    Google Scholar 

  27. A.N. Castro et al., Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  28. D.S.I. Abergel et al., Adv. Phys. 59, 261 (2010)

    ADS  Google Scholar 

  29. N.M.R. Peres, E.V. Castro, J. Phys.: Condens. Matter 19, 406231 (2007)

    Google Scholar 

  30. P.G. Silvestrov, K.B. Efetov, Phys. Rev. B 77, 155436 (2008)

    ADS  Google Scholar 

  31. A. Matulis, F.M. Peeters, Phys. Rev. B 77, 115423 (2008)

    ADS  Google Scholar 

  32. J.H. Bardarson, M. Titov, P.W. Brouwer, Phys. Rev. Lett. 102, 226803 (2009)

    ADS  Google Scholar 

  33. R.R. Hartmann, N.J. Robinson, M.E. Portnoi, Phys. Rev. B 81, 245431 (2010)

    ADS  Google Scholar 

  34. C.A. Downing, D.A. Stone, M.E. Portnoi, Phys. Rev. B 84, 155437 (2011)

    ADS  Google Scholar 

  35. V. Jakubsky, Phys. Rev. D 91, 045039 (2015)

    ADS  Google Scholar 

  36. R.R. Hartmann, M.E. Portnoi, Phys. Rev. A 89, 012101 (2014)

    ADS  Google Scholar 

  37. P. Ghosh, P. Roy, Phys. Lett. A 380, 567 (2015)

    ADS  Google Scholar 

  38. C.A. Downing, M.E. Portnoi, Phys. Rev. B 94, 165407 (2016)

    ADS  Google Scholar 

  39. C.A. Downing, M.E. Portnoi, J. Phys.: Condens. Matter 29, 315301 (2017)

    Google Scholar 

  40. C.A. Downing, M.E. Portnoi, Nat. Commun. 8, 897 (2017)

    ADS  Google Scholar 

  41. B. Midya, D.J. Fernández C., J. Phys. A 47, 285302 (2014)

    MathSciNet  Google Scholar 

  42. A. Schulze-Halberg, P. Roy, J. Phys. A 50, 365205 (2017)

    MathSciNet  Google Scholar 

  43. M.V. Ioffe, D.N. Nishnianidze, Mod. Phys. Lett. B 32, 1850329 (2018)

    ADS  Google Scholar 

  44. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edition (Cambridge, At the University Press, 1927) sect. 5.63

  45. A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Second Edition (Chapman and Hall/CRC Press, Boca Raton-London-New York, 2012) sect. 5.2.1

    MATH  Google Scholar 

  46. M. Kharitonov, J.-B. Mayer, E.M. Hankiewicz, Phys. Rev. Lett. 119, 266402 (2017)

    ADS  Google Scholar 

  47. M.T. Ahari, G. Ortiz, B. Seradjeh, Am. J. Phys. 84, 858 (2016)

    ADS  Google Scholar 

  48. D.R. Candido, M. Kharitonov, J. Carlos Egues, E.M. Hankiewicz, Phys. Rev. B 98, 161111 (2018)

    ADS  Google Scholar 

  49. E.L. Ince, Ordinary Differential Equations (Dover Publications, New York, 1956)

  50. A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, second edition (Chapman and Hall/CRC, Boca Raton, 2003)

  51. A.D. Polyanin, V.E. Nazaikinskii, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition (Chapman and Hall/CRC Press, Boca Raton-London-New York, 2016) sect. 9.3

    MATH  Google Scholar 

  52. C.-L. Ho, P. Roy, EPL 108, 20004 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ioffe.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioffe, M.V., Nishnianidze, D.N. & Prokhvatilov, E.V. New solutions for graphene with scalar potentials by means of generalized intertwining. Eur. Phys. J. Plus 134, 450 (2019). https://doi.org/10.1140/epjp/i2019-12798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12798-3

Navigation