Skip to main content
Log in

On (2 + 1)-dimensional physical models endowed with decoupled spatial and temporal memory indices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The current work concerns the development of an analytical scheme to handle (2 + 1) -dimensional partial differential equations endowed with decoupled spatial and temporal fractional derivatives (abbreviated by \( (\alpha,\beta)\) -models). For this purpose, a new bivariate fractional power series expansion has been integrated with the differential transform scheme. The mechanism of the submitted scheme depends mainly on converting the \( (\alpha,\beta)\) -model to a recurrence-differential equation that can be easily solved by virtue of an iterative procedure. This, in turn, reduces the computational cost of the Taylor power series method and consequently introduces a significant refinement for solving such hybrid models. To elucidate the novelty and efficiency of the proposed scheme, several \( (\alpha,\beta)\) -models are solved and the presence of remnant memory, due to the fractional derivatives, is graphically illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Caponetto, G. Dongola, L. Fortuna, I. Petráš, Factional Order System: Modeling and Control Applications (World Scientific, Singapore, 2010)

  2. C. Li, F. Zeng, Numerical Methods for Fractional Calculus (Chapman and Hall/CRC, USA, 2015)

  3. M.A.E. Herzallaha, D. Baleanu, Comput. Math. Appl. 64, 3059 (2012)

    Article  MathSciNet  Google Scholar 

  4. A.G. Radwan, A. Shamim, K.N. Salama, IEEE Microw. Wirel. Compon. Lett. 21, 120 (2011)

    Article  Google Scholar 

  5. A. Shamim, A.G. Radwan, K.N. Salama, IEEE Microw. Wirel. Compon. Lett. 21, 117 (2011)

    Article  Google Scholar 

  6. N. Engheta, IEEE Trans. Antennas Propag. Mag. 39, 35 (1997)

    Article  ADS  Google Scholar 

  7. H. Li, Y. Luo, Y.Q. Chen, IEEE Trans. Control Syst. Technol. 18, 516 (2010)

    Article  Google Scholar 

  8. I. Podlubny, IEEE Trans. Autom. Control. 44, 208 (1999)

    Article  MathSciNet  Google Scholar 

  9. R.L. Bagley, AIAA J. 27, 1414 (1989)

    Article  ADS  Google Scholar 

  10. F.C. Meral, T.J. Royston, R. Magin, Commun. Nonlinear Sci. Numer. Simul. 15, 939 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Rossikhin, M. Shitikova, Acta Mech. 120, 109 (1997)

    Article  MathSciNet  Google Scholar 

  12. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  Google Scholar 

  13. W. Chen, H. Sun, X. Zhang, D. Korošak, Comput. Math. Appl. 59, 1754 (2010)

    Article  MathSciNet  Google Scholar 

  14. R.L. Magin, Fractional Calculus in Bioengineering (Begell House, Danbury, CT, 2006)

  15. N. Sebaa, Z.E. Fellah, W. Lauriks, C. Depollier, Signal. Process. 86, 2668 (2006)

    Article  Google Scholar 

  16. Z.E. Fellah, C. Depollier, M. Fellah, Acta Acust. united Ac. 88, 34 (2002)

    Google Scholar 

  17. R.L. Magin, Comput. Math. Appl. 59, 1586 (2010)

    Article  MathSciNet  Google Scholar 

  18. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley and Sons, New York, 1993)

  19. M.D. Ortigueira, Fractional Calculus for Scientists and Engineers (Springer, Heidelberg, 2011)

  20. R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific, Singapore, 2011)

  21. D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos (World Scientific, Boston, 2012)

  22. A.C. Eringen, D.G. Edelen, Int. J. Eng. Sci. 10, 233 (1972)

    Article  Google Scholar 

  23. A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)

    Article  MathSciNet  Google Scholar 

  24. V. Pandey, S.P. Näsholm, S. Holm, Fract. Calc. Appl. Anal. 19, 498 (2016)

    Article  MathSciNet  Google Scholar 

  25. S. Holm, S.P. Näsholm, F. Prieur, R. Sinkus, Comput. Math. Appl. 66, 621 (2013)

    Article  MathSciNet  Google Scholar 

  26. I. Jaradat, M. Alquran, K. Al-Khaled, Eur. Phys. J. Plus 133, 162 (2018)

    Article  Google Scholar 

  27. I. Jaradat, M. Alquran, R. Abdel-Muhsen, Nonlinear Dyn. 93, 1911 (2018)

    Article  Google Scholar 

  28. I. Jaradat, M. Alquran, F. Yousef, S. Momani, D. Baleanu, to be published in Int. J. Nonlinear Sci. Numer. Simul.

  29. I. Jaradat, M. Alquran, M. Al-Dolat, Adv. Differ. Equ. 2018, 143 (2018)

    Article  Google Scholar 

  30. I. Jaradat, M. Al-Dolat, K. Al-Zoubi, M. Alquran, Chaos Solitons Fractals 108, 107 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. A. El-Ajou, O. Abu-Arqub, Z. Al-Zhour, S. Momani, Entropy 15, 5305 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. El-Ajou, O. Abu-Arqub, S. Momani, J. Comput. Phys. 293, 81 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Y. Zhang, A. Kumar, S. Kumar, D. Baleanu, X.J. Yang, J. Nonlinear Sci. Appl. 9, 5821 (2016)

    Article  MathSciNet  Google Scholar 

  34. A. Kumar, S. Kumar, S.P. Yan, Fundam. Inform. 151, 213 (2017)

    Article  Google Scholar 

  35. A. Kumar, S. Kumar, Nonlinear Eng. 5, 235 (2016)

    ADS  Google Scholar 

  36. V.F. Morales-Delgado, J.F. Gómez-Aguilar, S. Kumar, M.A. Taneco-Hernández, Eur. Phys. J. Plus 133, 200 (2018)

    Article  Google Scholar 

  37. M. Alquran, I. Jaradat, D. Baleanu, R. Abdel-Muhsen, Rom. J. Phys. 64, 103 (2019)

    Google Scholar 

  38. M. Ali, M. Alquran, I. Jaradat, Adv. Differ. Equ. 2019, 70 (2019)

    Article  Google Scholar 

  39. M. Alquran, H.M. Jaradat, M.I. Syam, Nonlinear Dyn. 90, 2525 (2017)

    Article  Google Scholar 

  40. M. Alquran, I. Jaradat, Physica A 527, 121275 (2019)

    Article  MathSciNet  Google Scholar 

  41. J.K. Zhou, Differential Transformation and its Applications for Electrical Circuits (Huazhong University Press, Wuhan, 1986)

  42. Y. Keskin, G. Oturanç, Int. J. Nonlinear Sci. Numer. Simul. 10, 741 (2009)

    Article  Google Scholar 

  43. M. Arshad, D. Lu, J. Wang, Commun. Nonlinear Sci. Numer. Simul. 48, 509 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Arikoglu, I. Ozkol, Chaos Solitons Fractals 34, 1473 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  46. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  47. J.E. Escalante-Martínez, J.F. Gómez-Aguilar, C. Calderón-Ramón et al., Adv. Mech. Eng. 8, 01 (2016)

    Article  Google Scholar 

  48. B. Ghanbari, Sci. World J. 2014, 438345 (2014)

    Google Scholar 

  49. V.K. Baranwal, R.K. Pandey, M.P. Tripathi, O.P. Singh, Z. Naturforsch. A. 66, 581 (2011)

    Article  ADS  Google Scholar 

  50. V.K. Srivastava, M.K. Awasthi, S. Kumar, Egypt. J. Basic Appl. Sci. 1, 60 (2014)

    Article  Google Scholar 

  51. G.A. Birajdar, Nonlinear Eng. 3, 21 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Jaradat.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaradat, I., Alquran, M., Yousef, F. et al. On (2 + 1)-dimensional physical models endowed with decoupled spatial and temporal memory indices. Eur. Phys. J. Plus 134, 360 (2019). https://doi.org/10.1140/epjp/i2019-12769-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12769-8

Navigation