Skip to main content
Log in

Introduction to experimental nuclear astrophysics

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The present contribution aims to present some general features of the experimental approaches in Nuclear Astrophysics. After a general introduction on light elements nucleosynthesis and on how to determine the reaction rates in a stellar environment, we will focus our attention on underground experiments aimed to directly measure nuclear cross sections of astrophysics interest. We will discuss the 14N(p,\( \gamma\))15O and 12C + 12C reactions, underlying the advantages in approaching these measurements in a deep underground laboratory, as the Laboratori Nazionali del Gran Sasso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Deboer et al., Rev. Mod. Phys. 89, 035007 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. R.E. Tribble et al., Rep. Prog. Phys. 77, 106901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Boeltzig et al., J. Phys. G 45, 025203 (2018)

    Article  ADS  Google Scholar 

  4. H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009)

    Article  ADS  Google Scholar 

  5. D.C. Clayton, Principles of Stellar Evolution and Nucleosynthesis (University of Chicago Press, 1968)

  6. G. Gilmore et al., Messenger 147, 25 (2012)

    ADS  Google Scholar 

  7. S.W. Stahler, F. Palla, The Formation of Stars (Wiley-VCH, Weinheim, 2004)

  8. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  9. H.A. Bethe, Phys. Rev. 55, 434 (1939)

    Article  ADS  Google Scholar 

  10. C.F. von Weizsacker, Phys. Z 39, 633 (1939)

    Google Scholar 

  11. G. Imbriani et al., Astron. Astrophys. 420, 625 (2004)

    Article  ADS  Google Scholar 

  12. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, 1988)

  13. A. Couture et al., Phys. Rev. C 77, 015802 (2008)

    Article  ADS  Google Scholar 

  14. R.C. Runkle et al., Phys. Rev. Lett. 94, 082503 (2005)

    Article  ADS  Google Scholar 

  15. D. Schürmann et al., Eur. Phys. J. A 26, 301 (2005)

    Article  ADS  Google Scholar 

  16. A. Di Leva et al., Phys. Rev. Lett. 102, 232502 (2009)

    Article  ADS  Google Scholar 

  17. C. Matei et al., Phys. Rev. Lett. 97, 242503 (2006)

    Article  ADS  Google Scholar 

  18. H. Costantini, A. Formicola, G. Imbriani, M. Junker, C. Rolfs, F. Strieder, Rep. Prog. Phys. 72, 086301 (2009)

    Article  ADS  Google Scholar 

  19. H.V. Klapdor-Kleingrothaus et al., Nucl. Instrum. Methods A 522, 371 (2004)

    Article  ADS  Google Scholar 

  20. A. Caciolli et al., Eur. Phys. J. A 39, 179 (2009)

    Article  ADS  Google Scholar 

  21. G. Audi, A.H. Wapstra et al., Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  22. U. Schröder et al., Nucl. Phys. A 467, 240 (1987)

    Article  ADS  Google Scholar 

  23. A. Formicola et al., Phys. Lett. B 591, 61 (2004)

    Article  ADS  Google Scholar 

  24. G. Imbriani et al., Eur. Phys. J. A 25, 455 (2005)

    Article  ADS  Google Scholar 

  25. R.C. Runkle et al., Phys. Rev. Lett. 94, 082503 (2005)

    Article  ADS  Google Scholar 

  26. R.C. Runkle et al., Phys. Rev. Lett. 94, 082503 (2005)

    Article  ADS  Google Scholar 

  27. A. Lemut et al., Phys. Lett. B 634, 483 (2006)

    Article  ADS  Google Scholar 

  28. D. Bemmerer et al., Nucl. Phys. A 779, 297 (2006)

    Article  Google Scholar 

  29. M. Marta et al., Phys. Rev. C 78, 022802(R) (2008)

    Article  ADS  Google Scholar 

  30. A.M. Mukhamedzhanov et al., Phys. Rev. C 67, 065804 (2003)

    Article  ADS  Google Scholar 

  31. D. Schürmann et al., Phys. Rev. C 77, 055803 (2008)

    Article  ADS  Google Scholar 

  32. S.O. Nelson et al., Phys. Rev. C 68, 065804 (2003)

    Article  ADS  Google Scholar 

  33. P.F. Bertone et al., Phys. Rev. Lett. 87, 152501 (2001)

    Article  ADS  Google Scholar 

  34. K. Yamada et al., Phys. Lett. B 579, 265 (2004)

    Article  ADS  Google Scholar 

  35. C. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  Google Scholar 

  36. C. Bennett et al., Astrophys. J. 583, 123 (2003)

    Article  Google Scholar 

  37. O. Straniero, L. Piersanti, S. Cristallo, J. Phys.: Conf. Ser. 665, 012008 (2016)

    Google Scholar 

  38. B. Leibundgut, Annu. Rev. Astron. Astrophys. 39, 67 (2001)

    Article  ADS  Google Scholar 

  39. H.W. Becker et al., Z. Phys. A 303, 305 (1981)

    Article  ADS  Google Scholar 

  40. T. Spillane et al., Phys. Rev. Lett. 98, 122501 (2007)

    Article  ADS  Google Scholar 

  41. L.R. Gasques et al., Phys. Rev. C 76, 035802 (2007)

    Article  ADS  Google Scholar 

  42. A. Tumino et al., Nature 557, 687 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Formicola.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formicola, A., Imbriani, G. Introduction to experimental nuclear astrophysics. Eur. Phys. J. Plus 134, 89 (2019). https://doi.org/10.1140/epjp/i2019-12497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12497-1

Navigation