Skip to main content
Log in

Electroless deposited silver dendrites for SERS identification of natural dyes on laboratory-dyed and historic textiles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Nanostructured silver having dendritic morphology is known to provide meaningful Raman signal enhancements. Herein, commercial silicon wafers were easily functionalized with silver dendrites by Galvanic electroless displacement. The superficial oxide layer was removed by treating the wafers with diluted HF to expose the pure silicon, which reacted with silver nitrate to form metallic silver. The morphology of the deposited silver nanostructures was assessed by SEM measurements. Afterwards, the potentialities of the fabricated substrates were tested in the analysis of several natural organic dyes used in antiquity, especially in textile dyeing, by surface-enhanced Raman scattering (SERS) spectroscopy. For the analysis, laboratory-dyed textiles were micro-extracted with a mild aqueous treatment, and the liquid fraction adsorbed and pre-concentrated on pure or functionalized silicon. The method was also applied to the analysis of dyes in archaeological Coptic textiles (30 B.C.-640 A.D.) of Egyptian origin. Together with the identification of the organic dye, the assessment of the inorganic mordant was obtained by surfaced-enhanced laser-induced breakdown spectroscopy (SENLIBS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.H.H. de Graaff, The Colourful Past: Origins (Abegg-Stiftung and Archetype Publications Ltd., London, 2004)

  2. D. Cardon, Natural Dyes: Sources, Tradition, Technology and Science (Archetype, 2007)

  3. I. Degano, E. Ribechini, F. Modugno, M.P. Colombini, Appl. Spectrosc. Rev. 44, 363 (2009)

    Article  ADS  Google Scholar 

  4. J. Wouters, Stud. Conserv. 30, 119 (1985)

    Google Scholar 

  5. G.W. Taylor, Stud. Conserv. 28, 153 (1983)

    Google Scholar 

  6. G. Bitossi, R. Giorgi, M. Mauro, B. Salvadori, L. Dei, Appl. Spectrosc. Rev. 40, 187 (2005)

    Article  ADS  Google Scholar 

  7. F. Pozzi, M. Leona, J. Raman Spectrosc. 47, 67 (2016)

    Article  ADS  Google Scholar 

  8. J.F. Betz, W.Y. Wei, Y. Cheng, I.M. White, G.W. Rubloff, Phys. Chem. Chem. Phys. 16, 2224 (2014)

    Article  Google Scholar 

  9. X.-M. Lin, Y. Cui, Y.-H. Xu, B. Ren, Z.-Q. Tian, Anal. Bioanal. Chem. 394, 1729 (2009)

    Article  Google Scholar 

  10. Z. Huang, X. Jiang, D. Guo, N. Gu, J. Nanosci. Nanotechnol. 11, 9395 (2011)

    Article  Google Scholar 

  11. B. Huang, J. Wang, S. Huo, W. Cai, Surf. Interface. Anal. 40, 81 (2008)

    Article  Google Scholar 

  12. C. Jing, Y. Fang, J. Colloid Interface Sci. 314, 46 (2007)

    Article  ADS  Google Scholar 

  13. X. Sun, L. Lin, Z. Li, Z. Zhang, J. Feng, Appl. Surf. Sci. 256, 916 (2009)

    Article  ADS  Google Scholar 

  14. S. Xie, X. Zhang, D. Xiao, M.C. Paau, J. Huang, M.M.F. Choi, J. Phys. Chem. C 115, 9943 (2011)

    Article  Google Scholar 

  15. W. Ye, Y. Chen, F. Zhou, C. Wang, Y. Li, J. Mater. Chem. 22, 18327 (2012)

    Article  Google Scholar 

  16. W. Ye, C. Shen, J. Tian, C. Wang, L. Bao, H. Gao, Electrochem. Commun. 10, 625 (2008)

    Article  Google Scholar 

  17. A. Gutés, C. Carraro, R. Maboudian, J. Am. Chem. Soc. 132, 1476 (2010)

    Article  Google Scholar 

  18. H.-X. Gu, L. Xue, Y.-F. Zhang, D.-W. Li, Y.-T. Long, ACS Appl. Mater. Interfaces 7, 2931 (2015)

    Article  Google Scholar 

  19. L. Fu, D. Zhu, A. Yu, Spectrochim. Acta Part A Mol. Biomol. Spectrosci. 149, 396 (2015)

    Article  Google Scholar 

  20. J. Fu, W. Ye, C. Wang, Mater. Chem. Phys. 141, 107 (2013)

    Article  Google Scholar 

  21. L. Chen, Q. Jing, J. Chen, B. Wang, J. Huang, Y. Liu, Mater. Charact. 85, 48 (2013)

    Article  Google Scholar 

  22. P.R. Brejna, P.R. Griffiths, Appl. Spectrosc. 64, 493 (2010)

    Article  ADS  Google Scholar 

  23. I. Degano, M. Biesaga, M.P. Colombini, M. Trojanowicz, J. Chromatogr. A 1218, 5837 (2011)

    Article  Google Scholar 

  24. J. Sanyova, Microchim. Acta 162, 361 (2008)

    Article  Google Scholar 

  25. A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, Anal. Bioanal. Chem. 385, 240 (2006)

    Article  Google Scholar 

  26. B. Campanella, I. Degano, E. Grifoni, S. Legnaioli, G. Lorenzetti, S. Pagnotta, F. Poggialini, V. Palleschi, Microchem. J. 139, 230 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Campanella.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poggialini, F., Campanella, B., Cavaleri, T. et al. Electroless deposited silver dendrites for SERS identification of natural dyes on laboratory-dyed and historic textiles. Eur. Phys. J. Plus 133, 550 (2018). https://doi.org/10.1140/epjp/i2018-12466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12466-2

Navigation