Skip to main content
Log in

Enhanced thermal energy transport of a ferrofluid contained in a double-sided lid-driven square container due to adiabatic block in the presence of magnetic force

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This article contains computational results for mixed convective energy flow in cobalt-based ferrofluid enclosed in a two-sided lid-driven container providing heat from the left vertical moving boundary under MHD effects influenced by a source of heat generation/absorption when a square adiabatic block of different aspect ratios is located in the center of a square container. The governing equations describing the heat transfer and fluid flow are exposed to the penalty method first and after that reduced equations are simplified by the Galerkin technique. The governing flow parameters are a concentration of ferroparticles (\( 0.0 < \phi < 0.1\)), Reynolds number (\( 50 < Re < 200\)), Hartmann number (\( 0 < Ha < 100\)), Richardson number (\( 0.1 < Ri < 100\)) and heat source/sink coefficient (\( -10 < Q < 10\)). The solutions show that the enhancements in heat transport occur due to the presence of the block up to a certain block size. Streamlines recirculation cells suppressed and augmentation in heat transfer are remarkably high because of the influence of an adiabatic block. The results also show that the patterns of energy and fluid flow are significantly dependent upon the concentration of nanoscale solid ferromagnetic particles, heat generation/absorption coefficient, Richardson, Reynolds and Hartman numbers. The obtained results are expressed in terms of streamlines, isotherms, local and overall energy flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.K.N.G. Ghia, K.N. Ghia, C.T. Shin, J. Comput. Phys. 48, 387 (1982)

    Article  ADS  Google Scholar 

  2. A.A. Mohamad, R. Viskanta, Numer. Heat Transf. 19, 187 (1991)

    Article  Google Scholar 

  3. A.A. Mohamad, R. Viskanta, Appl. Math. Modell. 19, 465 (1995)

    Article  Google Scholar 

  4. A.K. Prasad, J.R. Koseff, Int. J. Heat Fluid Flow 17, 460 (1996)

    Article  Google Scholar 

  5. T.H. Hsu, P.T. Hsu, S.P. How, Numer. Heat Transf. Part A Appl. 31, 655 (1997)

    Article  ADS  Google Scholar 

  6. T.H. Hsu, Numer. Heat Transf. Part A Appl. 38, 627 (2000)

    Article  ADS  Google Scholar 

  7. O. Aydm, Int. Commun. Heat Mass Transf. 26, 1019 (1999)

    Article  Google Scholar 

  8. H.F. Oztop, I. Dagtekin, Int. J. Heat Mass Transfer 47, 1761 (2004)

    Article  Google Scholar 

  9. A.J. Chamkha, Numer. Heat Transf. Part A Appl. 41, 529 (2002)

    Article  ADS  Google Scholar 

  10. R. Dalal, D. Naylor, D. Roeleveld, Energy Build. 41, 1256 (2009)

    Article  Google Scholar 

  11. J.K. Sigey, F.K. Gatheri, M. Kinyanjui, Energy Convers. Manag. 45, 2571 (2004)

    Article  Google Scholar 

  12. K. Yapici, S. Obut, Heat Transf. Eng. 36, 303 (2015)

    Article  ADS  Google Scholar 

  13. G. Guo, M.A. Sharif, Int. J. Therm. Sci. 43, 465 (2004)

    Article  Google Scholar 

  14. T.S. Cheng, W.H. Liu, Comput. Fluids 100, 108 (2014)

    Article  MathSciNet  Google Scholar 

  15. M.A. Waheed, Int. J. Heat Mass Transfer 52, 5055 (2009)

    Article  Google Scholar 

  16. R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transfer 50, 2002 (2007)

    Article  Google Scholar 

  17. D. Ramakrishna, T. Basak, S. Roy, I. Pop, Int. J. Heat Mass Transfer 55, 5436 (2012)

    Article  Google Scholar 

  18. M.A. Ismael, I. Pop, A.J. Chamkha, Int. J. Therm. Sci. 82, 47 (2014)

    Article  Google Scholar 

  19. V. Sivakumar, S. Sivasankaran, P. Prakash, J. Lee, Comput. Math. Appl. 59, 3053 (2010)

    Article  MathSciNet  Google Scholar 

  20. A. Barletta, D.A. Nield, Int. J. Heat Mass Transfer 52, 4244 (2009)

    Article  Google Scholar 

  21. E.M. Wahba, M.A. Gadalla, Heat Transf. Asian Res. 38, 422 (2009)

    Article  Google Scholar 

  22. S.K. Mahapatra, P. Nanda, A. Sarkar, Heat Mass Transf. 42, 739 (2006)

    Article  ADS  Google Scholar 

  23. T.H. Ji, S.Y. Kim, J.M. Hyun, Heat Mass Transf. 43, 629 (2007)

    Article  ADS  Google Scholar 

  24. P.N. Shankar, M.D. Deshpande, Annu. Rev. Fluid Mech. 32, 93 (2000)

    Article  ADS  Google Scholar 

  25. C. Scherer, A.M. Figueiredo Neto, Braz. J. Phys. 35, 718 (2005)

    Article  ADS  Google Scholar 

  26. G.R. Kefayati, Numer. Heat Transf. Part A Appl. 65, 509 (2014)

    Article  ADS  Google Scholar 

  27. G.H.R. Kefayati, J. Mol. Liq. 191, 1 (2014)

    Article  Google Scholar 

  28. M. Sheikholeslami, M. Gorji-Bandpy, Powder Technol. 256, 490 (2014)

    Article  Google Scholar 

  29. S. Mojumder, S. Saha, S. Saha, M.A.H. Mamun, Proc. Eng. 105, 96 (2015)

    Article  Google Scholar 

  30. M.M. Rahman, Cogent Phys. 3, 1234662 (2016)

    Google Scholar 

  31. N.S. Gibanov, M.A. Sheremet, H.F. Oztop, K. Al-Salem, Int. J. Heat Mass Transfer 112, 158 (2017)

    Article  Google Scholar 

  32. N.S. Gibanov, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Int. J. Heat Mass Transfer 114, 1086 (2017)

    Article  Google Scholar 

  33. M.S. Astanina, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Int. J. Heat Mass Transfer 118, 527 (2018)

    Article  Google Scholar 

  34. N.S. Gibanov, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Eur. J. Mech.-B/Fluids 70, 148 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. K.M. Rabbi, S. Saha, S. Mojumder, M.M. Rahman, R. Saidur, T.A. Ibrahim, Alex. Eng. J. 55, 127 (2016)

    Article  Google Scholar 

  36. N.C. Jhumur, A. Bhattacharjee, Proc. Eng. 194, 494 (2017)

    Article  Google Scholar 

  37. N.S. Gibanov, M.A. Sheremet, H.F. Oztop, O.K. Nusier, Numer. Heat Transf. Part A Appl. 72, 54 (2017)

    Article  ADS  Google Scholar 

  38. T. Javed, Z. Mehmood, Z. Abbas, Physica B 506, 122 (2017)

    Article  ADS  Google Scholar 

  39. T. Javed, M.A. Siddiqui, Int. J. Therm. Sci. 125, 419 (2018)

    Article  Google Scholar 

  40. P.A. Davidson An Introduction to Magnetohydrodynamics (Cambridge University Press, Cambridge, 2001)

  41. J.P. Garandet, T. Alboussiere, R. Moreau, Int. J. Heat Mass Transfer 35, 741 (1992)

    Article  Google Scholar 

  42. M.A. Waheed, Int. J. Heat Mass Transfer 52, 5055 (2009)

    Article  Google Scholar 

  43. M. Roy, S. Roy, T. Basak, Energy 82, 1 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arshad Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad Siddiqui, M., Javed, T. & Mehmood, Z. Enhanced thermal energy transport of a ferrofluid contained in a double-sided lid-driven square container due to adiabatic block in the presence of magnetic force. Eur. Phys. J. Plus 133, 468 (2018). https://doi.org/10.1140/epjp/i2018-12326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12326-1

Navigation