Skip to main content
Log in

MHD mixed convection Poiseuille flow in a porous medium: New trends of Caputo time fractional derivatives in heat transfer problems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper discusses new trends of fractional derivatives in heat transfer problems. More exactly, in this work magnetohydrodynamic (MHD) mixed convection Poiseuille flow of electrically conducting, an incompressible viscous fluid with memory, in a vertical channel filled with porous medium is studied under the influence of an oscillating pressure gradient. The vertical channel is taken in stationary state with non-uniform walls temperature. The problem is formulated in terms of fractional differential equations with Caputo time fractional derivatives. The closed forms of the non-dimensional temperature, velocity, Nusselt numbers and skin friction coefficients on the walls are determined by employing the Laplace transform method. The solutions are presented in terms of the time-fractional derivative of the Wright function, Robotnov and Hartley F -function and Lorenzo-Hartley R -function. Similar solutions for ordinary fluid, corresponding to the fractional parameter equal to one, are obtained as a particular case of the fractional problem. The influences of the fractional parameter \( \alpha\) , Péclet number Pe and Reynolds number Re on the heat and momentum transfer are studied. It is found that the heat transfer can be enhanced in the fluid with memory. Fluids described with a fractional model flow faster/slower than the ordinary fluid, depending on the Reynolds number/Péclet number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Svetlana I. Natarov, Clinton P. Conrad, Geophys. J. Int. 190, 1297 (2012)

    Article  ADS  Google Scholar 

  2. Yong-Li Chen, Ke-Qin Zhu, J. Non-Newton. Fluid Mech. 153, 1 (2008)

    Article  Google Scholar 

  3. R. Ellahi, Commun. Nonlinear Sci. Numer. Simul. 14, 1377 (2009)

    Article  ADS  Google Scholar 

  4. M. Devakar, D. Sreenivasu, B. Shankar, Alex. Eng. J. 53, 723 (2014)

    Article  Google Scholar 

  5. E.A. Ashmawy, Meccanica 47, 85 (2012)

    Article  MathSciNet  Google Scholar 

  6. O.D. Makinde, P.Y. Mhone, Rom. J. Phys. 50, 931 (2005)

    Google Scholar 

  7. O.D. Makinde, E. Osalusi, Rom. J. Phys. 51, 319 (2006)

    Google Scholar 

  8. A. Mehmood, A. Ali, Rom. J. Phys. 52, 85 (2007)

    Google Scholar 

  9. A. Farhad, Ilyas Khan, Samiulhaq, Norzieha Mustapha, Sharidan Shafie, J. Phys. Soc. Jpn. 81, 064402 (2012)

    Article  ADS  Google Scholar 

  10. G. Aaiza, K. Ilyas, S. Sharedan, Nanoscale Res. Lett. 10, 490 (2015)

    Article  ADS  Google Scholar 

  11. Aaiza Gul, Ilyas Khan, Sharidan Shafie, Asma Khalid, Arshad Khan, PLoS ONE 10, e0141213 (2015)

    Article  Google Scholar 

  12. J.A. Falade, Joel C. Ukaegbu, A.C. Egere, Samuel O. Adesanya, Alex. Eng. J. 56, 147 (2017)

    Article  Google Scholar 

  13. Sidra Aman, Neural Comput. Appl., https://doi.org/10.1007/s00521-016-2688-7 (2016)

  14. L. Debnath, Int. J. Math. Math. Sci. 203, 3413 (2003)

    Article  Google Scholar 

  15. R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Nonlinear Dyn. 29, 129 (2002)

    Article  Google Scholar 

  16. W.C. Tan, F. Xian, L. Wei, China Sci. Bull. 47, 1226 (2002)

    Article  Google Scholar 

  17. H. Qi, H. Jin, Nonlinear Anal. Real World Appl. 10, 2700 (2009)

    Article  MathSciNet  Google Scholar 

  18. F. Ali, S.A.A. Jan, Ilyas Khan., M. Gohar, N.A. Sheikh, Eur. Phys. J. Plus 131, 310 (2016)

    Article  Google Scholar 

  19. Ilyas Khan, Nehad Ali Shah, Dumitru Vieru, Eur. Phys. J. Plus 131, 181 (2016)

    Article  Google Scholar 

  20. N.A. Shah, I. Khan, Eur. Phys. J. C 76, 362 (2016)

    Article  ADS  Google Scholar 

  21. V. Kulish, J. Luis Lage, J. Fluids Eng. 124, 803 (2002)

    Article  Google Scholar 

  22. M.A. Imran, I. Khan, M. Ahmad, N.A. Shah, M. Nazar, J. Mol. Liq. 229, 67 (2017)

    Article  Google Scholar 

  23. B. Stankovic, Publ. Inst. Math. 10, 113 (1970)

    Google Scholar 

  24. T.T. Hartley, C.F. Lorenzo, A solution to the fundamental linear fractional order differential equations, NASA/TP-1998-2086 93 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Ali Shah, N., Nigar, N. et al. MHD mixed convection Poiseuille flow in a porous medium: New trends of Caputo time fractional derivatives in heat transfer problems. Eur. Phys. J. Plus 133, 299 (2018). https://doi.org/10.1140/epjp/i2018-12105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12105-0

Navigation