Phase-space analysis of the Schwinger effect in inhomogeneous electromagnetic fields

Regular Article
  • 13 Downloads

Abstract.

Schwinger pair production in spatially and temporally inhomogeneous electric and magnetic fields is studied. The focus is on the particle phase-space distribution within a high-intensity few-cycle pulse. Accurate numerical solutions of a quantum kinetic theory (DHW formalism) are presented in momentum space and, with the aid of coarse-graining techniques, in a mixed spatial-momentum representation. Additionally, signatures of the carrier-envelope phase as well as spin-field interactions are discussed on the basis of a trajectory-based model taking into account instantaneous pair production and relativistic single-particle dynamics. Although our simple semi-classical single-particle model cannot describe every aspect of the particle production process (quantum interferences), essential features such as spin-field interactions are captured.

References

  1. 1.
    W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936) an English translation is available at [physics/0605038]ADSCrossRefGoogle Scholar
  2. 2.
    J.S. Schwinger, Phys. Rev. 82, 664 (1951)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Sauter, Z. Phys. 69, 742 (1931)ADSCrossRefGoogle Scholar
  4. 4.
    D.L. Burke, R.C. Field, G. Horton-Smith, T. Kotseroglou, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg et al., Phys. Rev. Lett. 79, 1626 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer et al., Phys. Rev. D 60, 092004 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    T. Heinzl, A. Ilderton, Eur. Phys. J. D 55, 359 (2009) arXiv:0811.1960 [hep-ph]ADSCrossRefGoogle Scholar
  7. 7.
    A. Ringwald, Phys. Lett. B 510, 107 (2001) hep-ph/0103185ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
    M. Marklund, J. Lundin, Eur. Phys. J. D 55, 319 (2009) arXiv:0812.3087 [hep-th]ADSCrossRefGoogle Scholar
  11. 11.
    Z. Huang, K.-J. Kim, Phys. Rev. ST Accel. Beams 10, 034801 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    B.W.J. McNeil, N.R. Thompson, Nat. Photon. 4, 814 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    I.C.E. Turcu, S. Balascuta, F. Negoita, D. Jaroszynski, P. McKenna, AIP Conf. Proc. 1645, 416 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    W. Dittrich, H. Gies, Springer Tracts Mod. Phys. 166, 1 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    B. King, T. Heinzl, High Power Laser Sci. Eng. 4, e5 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Di Piazza, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012) arXiv:1111.3886 [hep-ph]ADSCrossRefGoogle Scholar
  17. 17.
    F. Karbstein, Phys. Rev. D 88, 085033 (2013) arXiv:1308.6184 [hep-th]ADSCrossRefGoogle Scholar
  18. 18.
    G.V. Dunne, Eur. Phys. J. D 55, 327 (2009) arXiv:0812.3163 [hep-th]ADSCrossRefGoogle Scholar
  19. 19.
    G.V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and extensions, in From Fields to Strings, edited by M. Shifman, Vol. 1 (World Scientific, 2012) pp. 445--522,  https://doi.org/10.1142/9789812775344-0014
  20. 20.
    D. d’Enterria, G.G. da Silveira, Phys. Rev. Lett. 111, 080405 (2013) arXiv:1305.7142 [hep-ph]CrossRefGoogle Scholar
  21. 21.
    ATLAS Collaboration (M. Aaboud et al.), Nat. Phys. 13, 852 (2017) arXiv:1702.01625 [hep-ex]CrossRefGoogle Scholar
  22. 22.
    F. Hebenstreit, R. Alkofer, H. Gies, Phys. Rev. Lett. 107, 180403 (2011) arXiv:1106.6175 [hep-ph]ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kluger, J.M. Eisenberg, B. Svetitsky, Int. J. Mod. Phys. E 2, 333 (1993) hep-ph/0311293ADSCrossRefGoogle Scholar
  24. 24.
    G.R. Shin, J. Rafelski, Phys. Rev. A 48, 1869 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    D. Vasak, M. Gyulassy, H.T. Elze, Ann. Phys. 173, 462 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    P. Zhuang, U. Heinz, Ann. Phys. 245, 311 (1996) arXiv:nucl-th/9502034ADSCrossRefGoogle Scholar
  27. 27.
    I. Bialynicki-Birula, P. Górnicki, J. Rafelski, Phys. Rev. D 44, 1825 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    S.A. Smolyansky, G. Ropke, S.M. Schmidt, D. Blaschke, V.D. Toneev, A.V. Prozorkevich, hep-ph/9712377Google Scholar
  29. 29.
    Y. Kluger, E. Mottola, J.M. Eisenberg, Phys. Rev. D 58, 125015 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Schmidt, D. Blaschke, G. Ropke, S.A. Smolyansky, A.V. Prozorkevich, V.D. Toneev, Int. J. Mod. Phys. E 7, 709 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    J.C.R. Bloch, V.A. Mizerny, A.V. Prozorkevich, C.D. Roberts, S.M. Schmidt, S.A. Smolyansky, D.V. Vinnik, Phys. Rev. D 60, 116011 (1999) nucl-th/9907027ADSCrossRefGoogle Scholar
  32. 32.
    F. Hebenstreit, R. Alkofer, H. Gies, Phys. Rev. D 78, 061701 (2008) arXiv:0807.2785 [hep-ph]ADSCrossRefGoogle Scholar
  33. 33.
    E. Akkermans, G.V. Dunne, Phys. Rev. Lett. 108, 030401 (2012) arXiv:1109.3489 [hep-th]ADSCrossRefGoogle Scholar
  34. 34.
    F. Hebenstreit, R. Alkofer, G.V. Dunne, H. Gies, Phys. Rev. Lett. 102, 150404 (2009) arXiv:0901.2631 [hep-ph]ADSCrossRefGoogle Scholar
  35. 35.
    A. Blinne, H. Gies, Phys. Rev. D 89, 085001 (2014) arXiv:1311.1678ADSCrossRefGoogle Scholar
  36. 36.
    A. Blinne, arXiv:1701.00743 [physics.plasm-ph]Google Scholar
  37. 37.
    A. Blinne, E. Strobel, Phys. Rev. D 93, 025014 (2016) arXiv:1510.02712ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    C. Kohlfürst, arXiv:1512.06082 [hep-ph]Google Scholar
  39. 39.
    D. Berényi, S. Varró, V.V. Skokov, P. Lévai, Phys. Lett. B 749, 210 (2015) arXiv:1401.0039 [hep-ph]ADSCrossRefGoogle Scholar
  40. 40.
    C. Kohlfürst, R. Alkofer, Phys. Lett. B 756, 371 (2016) arXiv:1512.06668 [hep-ph]ADSCrossRefGoogle Scholar
  41. 41.
    A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 21, 1966 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979)ADSCrossRefGoogle Scholar
  43. 43.
    C. Kohlfürst, H. Gies, R. Alkofer, Phys. Rev. Lett. 112, 050402 (2014) arXiv:1310.7836ADSCrossRefGoogle Scholar
  44. 44.
    M. Ruf, G.R. Mocken, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 102, 080402 (2009) arXiv:0810.4047 [physics.atom-ph]ADSCrossRefGoogle Scholar
  45. 45.
    R. Schutzhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008) arXiv:0807.0754 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. (Dover, 2000)Google Scholar
  47. 47.
    L.N. Trefethen, Spectral Methods in MATLAB (SIAM, 2001)Google Scholar
  48. 48.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, 3rd edition, The Art of Scientific Computing (Cambridge University Press, 2007)Google Scholar
  49. 49.
    E. Wigner, Phys. Rep. 40, 749 (1932)CrossRefGoogle Scholar
  50. 50.
    J.E. Moyal, Math. Proc. Camb. Philos. Soc. 45, 99 (1949)ADSCrossRefGoogle Scholar
  51. 51.
    M. Levitt, A. Warshel, Nature 253, 694 (1975)ADSCrossRefGoogle Scholar
  52. 52.
    A. Warshel, M. Levitt, J. Mol. Biol. 103, 0022 (1976)CrossRefGoogle Scholar
  53. 53.
    W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Polym. 49, 1521 (1998)Google Scholar
  54. 54.
    S. Izvekov, G.A. Voth, J. Phys. Chem. B 109, 2469 (2005)CrossRefGoogle Scholar
  55. 55.
    R.E. Rudd, J.Q. Broughton, Phys. Rev. B 58, R5893 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    H.I. Ingólfsson, C.A. Lopez, J.J. Uusitalo, D.H. de Jong, S.M. Gopal, X. Periole, S.J. Marrink, Wiley Interdiscip. Rev.-Comput. Mol. Sci. 4, 1759 (2014)CrossRefGoogle Scholar
  57. 57.
    T.D. Cohen, D.A. McGady, Phys. Rev. D 78, 036008 (2008) arXiv:0807.1117 [hep-ph]ADSCrossRefGoogle Scholar
  58. 58.
    N.B. Narozhnyi, A.I. Nikishov, Yad. Fiz. 11, 1072 (1970) (Sov. J. Nucl. Phys. 11Google Scholar
  59. 59.
    Q.G. Lin, J. Phys. G 25, 17 (1999) hep-th/9810037ADSCrossRefGoogle Scholar
  60. 60.
    G.V. Galtsov, N.S. Nikitina, Sov. Phys. JETP 57, 705 (1983) (Zh. Eksp. Teor. Fiz. 84Google Scholar
  61. 61.
    F. Karbstein, Phys. Rev. D 95, 076015 (2017) arXiv:1703.08017 [hep-ph]ADSCrossRefGoogle Scholar
  62. 62.
    A.J. Silenko, Phys. Rev. A 77, 012116 (2008) arXiv:0710.4218 [math-ph]ADSCrossRefGoogle Scholar
  63. 63.
    M. Wen, H. Bauke, C.H. Keitel, Sci. Rep. 6, 31624 (2016) arXiv:1510.09145ADSCrossRefGoogle Scholar
  64. 64.
    M. Wen, C.H. Keitel, H. Bauke, Phys. Rev. A 95, 042102 (2017) arXiv:1610.08951ADSCrossRefGoogle Scholar
  65. 65.
    L.H. Thomas, Philos. Mag. Ser. 7, 3 (1927)Google Scholar
  66. 66.
    V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2, 435 (1959)ADSCrossRefGoogle Scholar
  67. 67.
    E. Parzen, Ann. Math. Stat. 27, 832 (1956)CrossRefGoogle Scholar
  68. 68.
    M. Rosenblatt, Ann. Math. Stat. 27, 832 (1956)CrossRefGoogle Scholar
  69. 69.
    G.V. Dunne, C. Schubert, Phys. Rev. D 72, 105004 (2005) hep-th/0507174ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    G.V. Dunne, Q.H. Wang, H. Gies, C. Schubert, Phys. Rev. D 73, 065028 (2006) hep-th/0602176ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    S.P. Kim, D.N. Page, Phys. Rev. D 75, 045013 (2007) hep-th/0701047ADSCrossRefGoogle Scholar
  72. 72.
    A. Ilderton, G. Torgrimsson, J. Wardh, Phys. Rev. D 92, 065001 (2015) arXiv:1506.09186 [hep-th]ADSCrossRefGoogle Scholar
  73. 73.
    A. Ilderton, G. Torgrimsson, J. Wardh, Phys. Rev. D 92, 025009 (2015) arXiv:1503.08828 [hep-th]ADSCrossRefGoogle Scholar
  74. 74.
    C. Schneider, R. Schützhold, JHEP 02, 164 (2016) arXiv:1407.3584 [hep-th]ADSCrossRefGoogle Scholar
  75. 75.
    G. Torgrimsson, C. Schneider, J. Oertel, R. Schützhold, JHEP 06, 043 (2017) arXiv:1703.09203 [hep-th]ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz-Institut JenaJenaGermany
  2. 2.Theoretisch-Physikalisches Institut, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations