A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation

  • V. F. Morales-Delgado
  • J. F. Gómez-Aguilar
  • Dumitru Baleanu
Regular Article
  • 8 Downloads

Abstract.

By using the modified homotopy analysis transform method, we construct the analytical solutions of the space-time generalized nonlinear Schrödinger equation involving a new fractional conformable derivative in the Liouville-Caputo sense and the fractional-order derivative with the Mittag-Leffler law. Employing theoretical parameters, we present some numerical simulations and compare the solutions obtained.

References

  1. 1.
    W. Islam, M. Younis, S.T.R. Rizvi, Optik 130, 562 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    M. Younis, H. ur Rehman, S.T.R. Rizvi, S.A. Mahmood, Superlattices Microstruct. 104, 525 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    M. Eslami, Appl. Math. Comput. 285, 141 (2016)MathSciNetGoogle Scholar
  4. 4.
    J. Hristov, Electrical circuits of non-integer order: Introduction to an emerging interdisciplinary area with examples, in Analysis and Simulation of Electrical and Computer Systems, edited by Damian Mazur, Marek Golebiowski, Mariusz Korkosz, Lecture Notes in Electrical Engineering, Vol. 452, (Springer, 2018) pp. 251--273Google Scholar
  5. 5.
    J. Hristov, Fractional derivative with non-singular kernels: From the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, in Frontiers in Fractional Calculus, 2017, edited by S. Bhalekar (Bentham, 2017) Chap. 10, pp. 270--342Google Scholar
  6. 6.
    H. Su, R. Luo, Y. Zeng, Optik 131, 850 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    D. Kumar, J. Singh, S. Kumar, J. Assoc. Arab Univ. Basic Appl. Sci. 17, 14 (2015)Google Scholar
  8. 8.
    V.E. Tarasov, Phys. Lett. A 379, 2055 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    X.J. Yang, H.M. Srivastava, Commun. Nonlinear Sci. Numer. Simul. 29, 499 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Hamarsheh, A.I. Ismail, Z. Odibat, Appl. Math. Sci. 10, 1131 (2016)Google Scholar
  11. 11.
    O.S. Iyiola, M.E. Soh, C.D. Enyi, Math. Eng. Sci. Aerospace 4, 105 (2013)Google Scholar
  12. 12.
    M. Mirzazadeh, M. Eslami, E. Zerrad, M.F. Mahmood, A. Biswas, M. Belic, Nonlinear Dyn. 81, 1933 (2015)CrossRefGoogle Scholar
  13. 13.
    S.Z. Rida, A.S. Abedl-Rady, A.A.M. Arafa, H.R. Abedl-Rahim, Math. Sci. Lett. 5, 39 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Alquran, J. Appl. Anal. Comput. 5, 589 (2015)MathSciNetGoogle Scholar
  15. 15.
    J. Biazar, M. Eslami, Sci. Iran. 20, 359 (2013)Google Scholar
  16. 16.
    S. Kumar, D. Kumar, J. Singh, Adv. Nonlinear Anal. 5, 383 (2016)MathSciNetGoogle Scholar
  17. 17.
    M. Eslami, M. Mirzazadeh, Nonlinear Dyn. 83, 731 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Biswas, M. Mirzazadeh, M. Eslami, D. Milovic, M. Belic, Frequenz 68, 525 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    K. Wang, S. Liu, Adv. Differ. Equ. 2016, 61 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Ekici, M. Mirzazadeh, M. Eslami, Nonlinear Dyn. 84, 669 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, H. Chen, Q. Zhang, J. Appl. Math. Comput. 50, 589 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    S.K. Luo, J.M. He, Y.L. Xu, Int. J. Non-Linear Mech. 78, 105 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    S. Arshad, A.M. Siddiqui, A. Sohail, K. Maqbool, Z. Li, Adv. Mech. Eng.,  https://doi.org/10.1177/1687814017692946 (2017)
  24. 24.
    K.A. Gepreel, T.A. Nofal, Math. Sci. 9, 47 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Jafarian, P. Ghaderi, A.K. Golmankhaneh, D. Baleanu, Rom. Rep. Phys. 66, 603 (2014)Google Scholar
  26. 26.
    J. Singh, D. Kumar, R. Swroop, S. Kumar, Neural Comput. Appl.,  https://doi.org/10.1007/s00521-017-2909-8 (2017)
  27. 27.
    D. Kumar, J. Singh, D. Baleanu, Nonlinear Dyn. 91, 307 (2018)CrossRefGoogle Scholar
  28. 28.
    S.S. Ray, S. Sahoo, Appl. Math. Comput. 253, 72 (2015)MathSciNetGoogle Scholar
  29. 29.
    X.B. Yin, S. Kumar, D. Kumar, Adv. Mech. Eng.,  https://doi.org/10.1177/1687814015620330 (2015)
  30. 30.
    R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, J. Comput. Appl. Math. 264, 65 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, Adv. Differ. Equ. 2017, 247 (2017)CrossRefGoogle Scholar
  32. 32.
    Q. Zhou, Q. Zhu, Waves Random Complex Media 25, 52 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    M. Eslami, Nonlinear Dyn. 85, 813 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Patra, Eur. Phys. J. Plus 133, 104 (2018)CrossRefGoogle Scholar
  35. 35.
    A. Biswas, M. Mirzazadeh, M. Eslami, Optik 125, 4215 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    A. Ali, A.R. Seadawy, D. Lu, Optik 145, 79 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Q. Zhou, Optik 125, 5432 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    M. Najafi, S. Arbabi, Optik 126, 3992 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    A. Biswas, Chaos, Solitons Fractals 12, 579 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Q. Zhou, D.Z. Yao, Z. Cui, J. Mod. Opt. 59, 57 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    M. Savescu, K.R. Khan, R.W. Kohl, L. Moraru, A. Yildirim, A. Biswas, J. Nanoelectron. Optoelectron. 8, 208 (2013)CrossRefGoogle Scholar
  42. 42.
    M.M. Al Qurashi, D. Baleanu, M. Inc, Optik 140, 114 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    M. Savescu, K.R. Khan, P. Naruka, H. Jafari, L. Moraru, A. Biswas, J. Comput. Theor. Nanosci. 10, 1182 (2013)CrossRefGoogle Scholar
  44. 44.
    A.J.M. Jawad, S. Kumar, A. Biswas, Sci. Iran. Trans. D 21, 861 (2014)Google Scholar
  45. 45.
    A. Biswas, Phys. Lett. A 372, 5941 (2008)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    E. Topkara, D. Milovic, A.K. Sarma, E. Zerrad, A. Biswas, Commun. Nonlinear Sci. Numer. Simul. 15, 2320 (2010)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    M. Mirzazadeh, A. Biswas, Optik 125, 5467 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971)ADSCrossRefGoogle Scholar
  49. 49.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  50. 50.
    W.J. Liu, H.N. Han, L. Zhang, R. Wang, Z.Y. Wei, M. Lei, Laser Phys. Lett. 11, 045402 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    S. Kumar, A. Kumar, I.K. Argyros, Numer. Algorithms 75, 213 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    S. Kumar, Appl. Math. Model. 38, 3154 (2014)MathSciNetCrossRefGoogle Scholar
  53. 53.
    S. Kumar, M.M. Rashidi, Comput. Phys. Commun. 185, 1947 (2014)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Z. Odibat, A.S. Bataineh, Math. Methods Appl. Sci. 38, 991 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de MatemáticasUniversidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Cd. UniversitariaChilpancingoMexico
  2. 2.CONACyT-Tecnológico Nacional de México/CENIDETInterior Internado Palmira S/N, Col. PalmiraCuernavacaMexico
  3. 3.Cankaya UniversityFaculty of Art and Sciences, Department of MathematicsAnkaraTurkey
  4. 4.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations