Skip to main content
Log in

Flexoelectric effect in functionally graded materials: A numerical study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The flexoelectric effect has been observed in a wide range of dielectric materials. However, the flexoelectric effect can only be induced using the strain gradient. Researchers have examined the flexoelectricity using non-uniform loading (cantilever type) or non-uniform shape in dielectric materials, which may be undesirable in many applications. In the present article, we demonstrate induced flexoelectricity in dielectric functionally graded materials (FGMs) due to non-uniform Youngs’s modulus along the thickness. To examine flexoelectricity, Ba0.6Sr0.4TiO3 (BST) and polyvinylidene fluoride (PVDF) were used to numerically simulate the performance of FGMs. 2D simulation suggests that output voltage can drastically enhance for optimum grading index of FGMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Damjanovic, J. Appl. Phys. 82, 1788 (1997)

    Article  ADS  Google Scholar 

  2. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 11 (2005)

    Article  Google Scholar 

  3. L. Cross, S. Jang, R. Newnham, S. Nomura, K. Uchino, Ferroelectrics 23, 187 (1980)

    Article  Google Scholar 

  4. F. Li, L. Jin, Z. Xu, S. Zhang, Appl. Phys. Rev. 1, 011103 (2014)

    Article  ADS  Google Scholar 

  5. L.E. Cross, J. Mater. Sci. 41, 53 (2006)

    Article  ADS  Google Scholar 

  6. G. Catalan, A. Lubk, A. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. Blank, B. Noheda, Nat. Mater. 10, 963 (2011)

    Article  ADS  Google Scholar 

  7. R. Resta, Phys. Rev. E 105, 127601 (2010)

    ADS  Google Scholar 

  8. S.-B. Choi, G.-W. Kim, J. Phys. D 50, 075502 (2017)

    Article  ADS  Google Scholar 

  9. L. Shu, X. Wei, T. Pang, X. Yao, C. Wang, J. Appl. Phys. 110, 104106 (2011)

    Article  ADS  Google Scholar 

  10. X. Jiang, W. Huang, S. Zhang, Nano Energy 2, 1079 (2013)

    Article  Google Scholar 

  11. M. Majdoub, P. Sharma, T. Çağin, Phys. Rev. B 78, 121407 (2008)

    Article  ADS  Google Scholar 

  12. J.M. Gregg, Science 336, 41 (2012)

    Article  ADS  Google Scholar 

  13. S.M. Kogan, Sov. Phys. Solid State 5, 2069 (1964)

    Google Scholar 

  14. A. Tagantsev, Phys. Rev. B 34, 5883 (1986)

    Article  ADS  Google Scholar 

  15. S. Baskaran, X. He, Q. Chen, J.Y. Fu, Appl. Phys. Lett. 98, 242901 (2011)

    Article  ADS  Google Scholar 

  16. B. Chu, D. Salem, Appl. Phys. Lett. 101, 103905 (2012)

    Article  ADS  Google Scholar 

  17. M. Majdoub, P. Sharma, T. Cagin, Phys. Rev. B 77, 125424 (2008)

    Article  ADS  Google Scholar 

  18. F. Ebrahimi, M.R. Barati, Arab. J. Sci. Eng. 43, 1423 (2018)

    Article  Google Scholar 

  19. F. Ebrahimi, M.R. Barati, Nanomater. Nanotechnol. (2017) https://doi.org/10.1177/1847980417713106

  20. F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 132, 19 (2017)

    Article  Google Scholar 

  21. M. Khoshgoftar, A.G. Arani, M. Arefi, Smart Mater. Struct. 18, 115007 (2009)

    Article  ADS  Google Scholar 

  22. W. Chen, H. Ding, Acta Mech. 153, 207 (2002)

    Article  Google Scholar 

  23. J. Qiu, J. Tani, T. Ueno, T. Morita, H. Takahashi, H. Du, Smart Mater. Struct. 12, 115 (2003)

    Article  ADS  Google Scholar 

  24. J. Yang, H. Xiang, Smart Mater. Struct. 16, 784 (2007)

    Article  ADS  Google Scholar 

  25. Z. Zhong, T. Yu, Smart Mater. Struct. 15, 1404 (2006)

    Article  ADS  Google Scholar 

  26. S. Zhong, Z.-G. Ban, S. Alpay, J. Mantese, Appl. Phys. Lett. 89, 142913 (2006)

    Article  ADS  Google Scholar 

  27. R. Nath, S. Zhong, S. Alpay, B. Huey, M. Cole, Appl. Phys. Lett. 92, 012916 (2008)

    Article  ADS  Google Scholar 

  28. J. Reddy, Z.-Q. Cheng, J. Appl. Mech. 68, 234 (2001)

    Article  ADS  Google Scholar 

  29. V.P. Nguyen, C. Anitescu, S.P. Bordas, T. Rabczuk, Math. Comput. Simul. 117, 89 (2015)

    Article  Google Scholar 

  30. S.-B. Choi, G.-W. Kim, J. Phys. D 50, 075502 (2017)

    Article  ADS  Google Scholar 

  31. H. Ghasemi, H.S. Park, T. Rabczuk, Comput. Methods Appl. Mech. Eng. 313, 239 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Vaish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kiran, R., Kumar, R. et al. Flexoelectric effect in functionally graded materials: A numerical study. Eur. Phys. J. Plus 133, 141 (2018). https://doi.org/10.1140/epjp/i2018-11976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11976-1

Navigation