Advertisement

DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS

  • C. E. Aalseth
  • F. Acerbi
  • P. Agnes
  • I. F. M. Albuquerque
  • T. Alexander
  • A. Alici
  • A. K. Alton
  • P. Antonioli
  • S. Arcelli
  • R. Ardito
  • I. J. Arnquist
  • D. M. Asner
  • M. Ave
  • H. O. Back
  • A. I. Barrado Olmedo
  • G. Batignani
  • E. Bertoldo
  • S. Bettarini
  • M. G. Bisogni
  • V. Bocci
  • A. Bondar
  • G. Bonfini
  • W. Bonivento
  • M. Bossa
  • B. Bottino
  • M. Boulay
  • R. Bunker
  • S. Bussino
  • A. Buzulutskov
  • M. Cadeddu
  • M. Cadoni
  • A. Caminata
  • N. Canci
  • A. Candela
  • C. Cantini
  • M. Caravati
  • M. Cariello
  • M. Carlini
  • M. Carpinelli
  • A. Castellani
  • S. Catalanotti
  • V. Cataudella
  • P. Cavalcante
  • S. Cavuoti
  • R. Cereseto
  • A. Chepurnov
  • C. Cicalò
  • L. Cifarelli
  • M. Citterio
  • A. G. Cocco
  • M. Colocci
  • S. Corgiolu
  • G. Covone
  • P. Crivelli
  • I. D’Antone
  • M. D’Incecco
  • D. D’Urso
  • M. D. Da Rocha Rolo
  • M. Daniel
  • S. Davini
  • A. de Candia
  • S. De Cecco
  • M. De Deo
  • G. De Filippis
  • G. De Guido
  • G. De Rosa
  • G. Dellacasa
  • M. Della Valle
  • P. Demontis
  • A. Derbin
  • A. Devoto
  • F. Di Eusanio
  • G. Di Pietro
  • C. Dionisi
  • A. Dolgov
  • I. Dormia
  • S. Dussoni
  • A. Empl
  • M. Fernandez Diaz
  • A. Ferri
  • C. Filip
  • G. Fiorillo
  • K. Fomenko
  • D. Franco
  • G. E. Froudakis
  • F. Gabriele
  • A. Gabrieli
  • C. Galbiati
  • P. Garcia Abia
  • A. Gendotti
  • A. Ghisi
  • S. Giagu
  • P. Giampa
  • G. Gibertoni
  • C. Giganti
  • M. A. Giorgi
  • G. K. Giovanetti
  • M. L. Gligan
  • A. Gola
  • O. Gorchakov
  • A. M. Goretti
  • F. Granato
  • M. Grassi
  • J. W. Grate
  • G. Y. Grigoriev
  • M. Gromov
  • M. Guan
  • M. B. B. Guerra
  • M. Guerzoni
  • M. Gulino
  • R. K. Haaland
  • A. Hallin
  • B. Harrop
  • E. W. Hoppe
  • S. Horikawa
  • B. Hosseini
  • D. Hughes
  • P. Humble
  • E. V. Hungerford
  • An. Ianni
  • C. Jillings
  • T. N. Johnson
  • K. Keeter
  • C. L. Kendziora
  • S. Kim
  • G. Koh
  • D. Korablev
  • G. Korga
  • A. Kubankin
  • M. Kuss
  • M. Kuźniak
  • M. La Commara
  • B. Lehnert
  • X. Li
  • M. Lissia
  • G. U. Lodi
  • B. Loer
  • G. Longo
  • P. Loverre
  • R. Lussana
  • L. Luzzi
  • Y. Ma
  • A. A. Machado
  • I. N. Machulin
  • A. Mandarano
  • L. Mapelli
  • M. Marcante
  • A. Margotti
  • S. M. Mari
  • M. Mariani
  • J. Maricic
  • C. J. Martoff
  • M. Mascia
  • M. Mayer
  • A. B. McDonald
  • A. Messina
  • P. D. Meyers
  • R. Milincic
  • A. Moggi
  • S. Moioli
  • J. Monroe
  • A. Monte
  • M. Morrocchi
  • B. J. Mount
  • W. Mu
  • V. N. Muratova
  • S. Murphy
  • P. Musico
  • R. Nania
  • A. Navrer Agasson
  • I. Nikulin
  • V. Nosov
  • A. O. Nozdrina
  • N. N. Nurakhov
  • A. Oleinik
  • V. Oleynikov
  • M. Orsini
  • F. Ortica
  • L. Pagani
  • M. Pallavicini
  • S. Palmas
  • L. Pandola
  • E. Pantic
  • E. Paoloni
  • G. Paternoster
  • V. Pavletcov
  • F. Pazzona
  • S. Peeters
  • K. Pelczar
  • L. A. Pellegrini
  • N. Pelliccia
  • F. Perotti
  • R. Perruzza
  • V. Pesudo
  • C. Piemonte
  • F. Pilo
  • A. Pocar
  • T. Pollmann
  • D. Portaluppi
  • D. A. Pugachev
  • H. Qian
  • B. Radics
  • F. Raffaelli
  • F. Ragusa
  • M. Razeti
  • A. Razeto
  • V. Regazzoni
  • C. Regenfus
  • B. Reinhold
  • A. L. Renshaw
  • M. Rescigno
  • F. Retière
  • Q. Riffard
  • A. Rivetti
  • S. Rizzardini
  • A. Romani
  • L. Romero
  • B. Rossi
  • N. Rossi
  • A. Rubbia
  • D. Sablone
  • P. Salatino
  • O. Samoylov
  • E. Sánchez García
  • W. Sands
  • S. Sanfilippo
  • M. Sant
  • R. Santorelli
  • C. Savarese
  • E. Scapparone
  • B. Schlitzer
  • G. Scioli
  • E. Segreto
  • A. Seifert
  • D. A. Semenov
  • A. Shchagin
  • L. Shekhtman
  • E. Shemyakina
  • A. Sheshukov
  • M. Simeone
  • P. N. Singh
  • P. Skensved
  • M. D. Skorokhvatov
  • O. Smirnov
  • G. Sobrero
  • A. Sokolov
  • A. Sotnikov
  • F. Speziale
  • R. Stainforth
  • C. Stanford
  • G. B. Suffritti
  • Y. Suvorov
  • R. Tartaglia
  • G. Testera
  • A. Tonazzo
  • A. Tosi
  • P. Trinchese
  • E. V. Unzhakov
  • A. Vacca
  • E. Vázquez-Jáuregui
  • M. Verducci
  • T. Viant
  • F. Villa
  • A. Vishneva
  • B. Vogelaar
  • M. Wada
  • J. Wahl
  • J. Walding
  • H. Wang
  • Y. Wang
  • A. W. Watson
  • S. Westerdale
  • R. Williams
  • M. M. Wojcik
  • S. Wu
  • X. Xiang
  • X. Xiao
  • C. Yang
  • Z. Ye
  • A. Yllera de Llano
  • F. Zappa
  • G. Zappalà
  • C. Zhu
  • A. Zichichi
  • M. Zullo
  • A. Zullo
  • G. Zuzel
Technical Report

Abstract.

Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of \(>3 \times 10^{9}\) is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than \(< 0.1\) events (other than \(\nu\)-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of \(1.2 \times 10^{-47}\) cm2 (\(1.1 \times 10^{-46}\) cm2) for WIMPs of 1 TeV/c2 (10 TeV/c2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.

References

  1. 1.
    J.H. Oort, Bull. Astron. Inst. Netherlands 6, 249 (1932)ADSGoogle Scholar
  2. 2.
    F. Zwicky, Helv. Phys. Acta 6, 110 (1933)ADSGoogle Scholar
  3. 3.
    F. Zwicky, Astrophys. J. 86, 217 (1937)ADSCrossRefGoogle Scholar
  4. 4.
    S.M. Faber, J.S. Gallagher, Annu. Rev. Astron. Astrophys. 17, 135 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    D. Clowe et al., Astrophys. J. 648, L109 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    G. Steigman, M.S. Turner, Nucl. Phys. B 253, 375 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    P. Ramond, Phys. Rev. D 3, 2415 (1971)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Y.A. Gol’fand, E.P. Likhtman, JETP Lett. 13, 323 (1971)ADSGoogle Scholar
  11. 11.
    D.V. Volkov, V.P. Akulov, JETP Lett. 16, 438 (1972)ADSGoogle Scholar
  12. 12.
    J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    P. Fayet, Nucl. Phys. B 90, 104 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    M. Aaboud et al., Phys. Rev. D 94, 032005 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    The CMS Collaboration, arXiv:1607.05764v1 (2016)Google Scholar
  16. 16.
    P. Cushman, arXiv:1310.8327v2 (2013)Google Scholar
  17. 17.
    J. Billard, E. Figueroa-Feliciano, L. Strigari, Phys. Rev. D 89, 023524 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    O. Adriani et al., Nature 458, 607 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    M. Aguilar et al., Phys. Rev. Lett. 113, 121102 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    L. Feng et al., Phys. Lett. B 728, 250 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    W.B. Atwood et al., Astrophys. J. 697, 1071 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    M. Ackermann et al., Astrophys. J. 840, 43 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    M. Ajello, arXiv:1511.02938v1 (2015)Google Scholar
  24. 24.
    J. Carr, arXiv:1508.06128v1 (2015)Google Scholar
  25. 25.
    C.-S. Chen, F.-F. Lee, G.-L. Lin, Y.-H. Lin, JCAP 10, 049 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    D.S. Akerib et al., Science 327, 1619 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Ahmed et al., Phys. Rev. D 83, 112002 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    R. Agnese et al., Phys. Rev. Lett. 111, 251301 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    R. Agnese et al., Phys. Rev. D 92, 072003 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    R. Agnese et al., Phys. Rev. Lett. 112, 041302 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    E. Armengaud et al., Phys. Rev. D 86, 051701 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    G. Angloher et al., Eur. Phys. J. C 72, 1971 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    R. Bernabei et al., Eur. Phys. J. C 56, 333 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    R. Bernabei et al., Eur. Phys. J. C 67, 39 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    R. Bernabei et al., EPJ Web of Conferences 136, 05001 (2017)CrossRefGoogle Scholar
  36. 36.
    S.C. Kim et al., Phys. Rev. Lett. 108, 181301 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    S. Archambault et al., Phys. Lett. B 682, 185 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    E. Behnke et al., Phys. Rev. Lett. 106, 021303 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    E. Behnke et al., Phys. Rev. D 90, 079902 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    C. Amole et al., Phys. Rev. Lett. 114, 231302 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    C. Amole, arXiv:1510.07754v1 (2015)Google Scholar
  42. 42.
    C.E. Aalseth et al., Phys. Rev. Lett. 101, 251301 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    C.E. Aalseth et al., Phys. Rev. Lett. 106, 131301 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    C.E. Aalseth et al., Phys. Rev. D 88, 012002 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    C.E. Aalseth, arXiv:1401.3295v1 (2014)Google Scholar
  46. 46.
    G.K. Giovanetti et al., Phys. Proc. 61, 77 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    G.J. Alner et al., Astropart. Phys. 28, 287 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    E. Aprile et al., Phys. Rev. Lett. 109, 181301 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    E. Aprile et al., Phys. Rev. Lett. 115, 091302 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    E. Aprile et al., Phys. Rev. D 94, 122001 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    D.S. Akerib et al., Phys. Rev. Lett. 112, 091303 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    D.S. Akerib et al., Phys. Rev. Lett. 116, 161301 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    A. Manalaysay, presentation at IDM2016 (2016)Google Scholar
  54. 54.
    D.S. Akerib et al., Phys. Rev. Lett. 118, 021303 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    K. Abe et al., Phys. Lett. B 719, 78 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    M. Xiao et al., Sci. China Phys. Mech. Astron. 57, 2024 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    X. Ji, presentation at IDM2016 (2016)Google Scholar
  58. 58.
    X. Cui, arXiv:1708.06917v2 (2017)Google Scholar
  59. 59.
    E. Aprile et al., JCAP 2016, 027 (2016)CrossRefGoogle Scholar
  60. 60.
    E. Aprile, arXiv:1705.06655v2 (2017)Google Scholar
  61. 61.
    H. Nelson, presentation at DM2014 (2014)Google Scholar
  62. 62.
    V.A. Kudryavtsev, AIP Conf. Proc. 1672, 060003 (2015) ISSN 0094-243XCrossRefGoogle Scholar
  63. 63.
    E. Aprile, presentation at LNGS Sci. Comm. Apr. 2015 (2015)Google Scholar
  64. 64.
    A. Marchionni et al., J. Phys. Conf. Ser. 308, 012006 (2011)CrossRefGoogle Scholar
  65. 65.
    A. Badertscher, arXiv:1307.0117v1 (2013)Google Scholar
  66. 66.
    J. Calvo, arXiv:1505.02443v1 (2015)Google Scholar
  67. 67.
    A. Hime, arXiv:1110.1005v1 (2011)Google Scholar
  68. 68.
    M.G. Boulay, J. Phys. Conf. Ser. 375, 012027 (2012)CrossRefGoogle Scholar
  69. 69.
    P. Benetti et al., Nucl. Instrum. Methods A 574, 83 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    P. Benetti et al., Astropart. Phys. 28, 495 (2008)CrossRefGoogle Scholar
  71. 71.
    P. Agnes et al., Phys. Lett. B 743, 456 (2015)ADSCrossRefGoogle Scholar
  72. 72.
    P. Agnes et al., Phys. Rev. D 93, 081101 (2016)ADSCrossRefGoogle Scholar
  73. 73.
    E. Kuflik, A. Pierce, K.M. Zurek, Phys. Rev. D 81, 111701 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    O. Buchmueller, C. Doglioni, L.-T. Wang, Nat. Phys. 13, 217 (2017)CrossRefGoogle Scholar
  75. 75.
    F. Kahlhoefer, Int. J. Mod. Phys. A 32, 1730006 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    M.G. Boulay, presentation at New Ideas in Dark Matter 2017 (2017)Google Scholar
  77. 77.
    S. Westerdale, PhD Thesis, Princeton University (2016)Google Scholar
  78. 78.
    T. Alexander et al., Astropart. Phys. 49, 44 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    M.G. Boulay, A. Hime, Astropart. Phys. 25, 179 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    H. Cao et al., Phys. Rev. D 91, 092007 (2015)ADSCrossRefGoogle Scholar
  81. 81.
    E.A. Bagnaschi et al., Eur. Phys. J. C 75, 1419 (2015)CrossRefGoogle Scholar
  82. 82.
    J. Dobson, presentation at IDM2016 (2016)Google Scholar
  83. 83.
    D. Franco et al., JCAP 2016, 017 (2016)CrossRefGoogle Scholar
  84. 84.
    G. Bellini et al., Phys. Rev. D 89, 112007 (2014)ADSCrossRefGoogle Scholar
  85. 85.
    G. Bellini et al., JCAP 1308, 049 (2013)ADSCrossRefGoogle Scholar
  86. 86.
    A. Empl, E.V. Hungerford, R. Jasim, P. Mosteiro, JCAP 1408, 064 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    A. Hitachi, T. Doke, A. Mozumder, Phys. Rev. B 46, 11463 (1992)ADSCrossRefGoogle Scholar
  88. 88.
    P.A. Amaudruz et al., Astropart. Phys. 85, 1 (2016)ADSCrossRefGoogle Scholar
  89. 89.
    Z. Wang, L. Bao, X. Hao, Y. Ju, Rev. Sci. Instr. 85, 015116 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    P. Agnes et al., JINST 12, P01021 (2017)CrossRefGoogle Scholar
  91. 91.
    P. Agnes, arXiv:1707.05630v1 (2017)Google Scholar
  92. 92.
    P. Agnes, arXiv:1707.09889v1 (2017)Google Scholar
  93. 93.
    P. Agnes et al., JINST 11, P03016 (2016)CrossRefGoogle Scholar
  94. 94.
    P. Agnes et al., JINST 11, P12007 (2016)CrossRefGoogle Scholar
  95. 95.
    P. Agnes, arXiv:1611.02750v1 (2016)Google Scholar
  96. 96.
    T. Alexander et al., Phys. Rev. D 88, 092006 (2013)ADSCrossRefGoogle Scholar
  97. 97.
    F.A. Lindemann, Philos. Mag. 38, 173 (1919)CrossRefGoogle Scholar
  98. 98.
    H.C. Urey, F.G. Brickwedde, G.M. Murphy, Phys. Rev. 40, 1 (1932)ADSCrossRefGoogle Scholar
  99. 99.
    J. de Boer, R.J. Lunbeck, Physica 14, 520 (1948)ADSCrossRefGoogle Scholar
  100. 100.
    J. de Boer, Physica 14, 139 (1948)ADSCrossRefGoogle Scholar
  101. 101.
    J. de Boer, A. Michels, Physica 6, 97 (1939)ADSCrossRefGoogle Scholar
  102. 102.
    J. Bigeleisen, J. Chem. Phys. 34, 1485 (1961)ADSCrossRefGoogle Scholar
  103. 103.
    G. Boato, G. Scoles, M.E. Vallauri, Nuovo Cimento 23, 1041 (1962)CrossRefGoogle Scholar
  104. 104.
    G. Boato, G. Casanova, G. Scoles, M.E. Vallauri, Nuovo Cimento 20, 87 (1961)CrossRefGoogle Scholar
  105. 105.
    G. Boato, G. Scoles, M.E. Vallauri, Nuovo Cimento 14, 735 (1959)CrossRefGoogle Scholar
  106. 106.
    G. Casanova, A. Levi, N. Terzi, Physica 30, 937 (1964)ADSCrossRefGoogle Scholar
  107. 107.
    C. Casanova, R. Fieschi, N. Terzi, Nuovo Cimento 18, 837 (1960)CrossRefGoogle Scholar
  108. 108.
    R. Fieschi, N. Terzi, Physica 27, 453 (1961)ADSCrossRefGoogle Scholar
  109. 109.
    J.N. Canongia Lopes, A.A.H. Pádua, L.P.N. Rebelo, J. Bigeleisen, J. Chem. Phys. 118, 5028 (2003)ADSCrossRefGoogle Scholar
  110. 110.
    J.C.G. Calado, F.A. Dias, J.N.C. Lopes, L.P.N. Rebelo, J. Phys. Chem. B 104, 8735 (2000)CrossRefGoogle Scholar
  111. 111.
    W.L. McCabe, E.W. Thiele, Ind. Eng. Chem. 17, 605 (1925)CrossRefGoogle Scholar
  112. 112.
    A.J.V. Underwood, Ind. Eng. Chem. 41, 2844 (1949)CrossRefGoogle Scholar
  113. 113.
    E.R. Gilliland, Ind. Eng. Chem. 32, 1220 (1940)CrossRefGoogle Scholar
  114. 114.
    M.R. Fenske, Ind. Eng. Chem. 24, 482 (1932)CrossRefGoogle Scholar
  115. 115.
    Aspen Technology, Inc., Aspen Plus (2015)Google Scholar
  116. 116.
    J. Xu et al., Astropart. Phys. 66, 53 (2015)ADSCrossRefGoogle Scholar
  117. 117.
    H. Simgen, G. Zuzel, Appl. Radiat. Isot. 67, 922 (2009)CrossRefGoogle Scholar
  118. 118.
    V.N. Moieseyev, Titanium Alloys (Taylor & Francis, 2006)Google Scholar
  119. 119.
    D.S. Akerib et al., Astropart. Phys. 62, 33 (2015)ADSCrossRefGoogle Scholar
  120. 120.
    T. Petersen, Liquid Argon Maximum Convective Heat Flux versus Liquid Depth, DO EN 237, Fermi National Accelerator Laboratory (1990)Google Scholar
  121. 121.
    R. Acciarri, arXiv:1601.05471v1 (2016)Google Scholar
  122. 122.
    I. Ostrovskiy et al., IEEE Trans. Nucl. Sci. 62, 1825 (2015)ADSCrossRefGoogle Scholar
  123. 123.
    M. D’Incecco, arXiv:1706.04220v1 (2017)Google Scholar
  124. 124.
    C. Piemonte et al., IEEE Trans. Elec. Dev. 63, 1111 (2016)ADSCrossRefGoogle Scholar
  125. 125.
    A. Ferri et al., JINST 11, P03023 (2016)CrossRefGoogle Scholar
  126. 126.
    F. Acerbi et al., IEEE Trans. Elec. Dev. 64, 521 (2017)ADSCrossRefGoogle Scholar
  127. 127.
    C. Piemonte et al., IEEE NSS/MIC Conf. Rec. 2012, 428 (2012) ISSN 1082-3654Google Scholar
  128. 128.
    A. Gola, C. Piemonte, A. Tarolli, IEEE Trans. Nucl. Sci. 59, 358 (2012)ADSCrossRefGoogle Scholar
  129. 129.
    F. Corsi et al., Nucl. Instrum. Methods A 572, 416 (2007)ADSCrossRefGoogle Scholar
  130. 130.
    W.J. Willis, V. Radeka, Nucl. Instrum. Methods 120, 221 (1974)ADSCrossRefGoogle Scholar
  131. 131.
    V. Radeka, IEEE Trans. Nucl. Sci. 21, 51 (1974)ADSCrossRefGoogle Scholar
  132. 132.
    V. Radeka, S. Rescia, Nucl. Instrum. Methods A 265, 228 (1988)ADSCrossRefGoogle Scholar
  133. 133.
    R.L. Chase, C. de La Taille, S. Rescia, N. Seguin, Nucl. Instrum. Methods A 330, 228 (1993)ADSCrossRefGoogle Scholar
  134. 134.
    R.L. Chase, S. Rescia, IEEE Trans. Nucl. Sci. 44, 1028 (1997)ADSCrossRefGoogle Scholar
  135. 135.
    M. D’Incecco, arXiv:1706.04213v1 (2017)Google Scholar
  136. 136.
    W. Ootani, Nucl. Instrum. Methods A 732, 146 (2013)ADSCrossRefGoogle Scholar
  137. 137.
    P.W. Cattaneo et al., Nucl. Instrum. Methods A 828, 191 (2016)ADSCrossRefGoogle Scholar
  138. 138.
    S.O. Rice, Bell Syst. Tech. J. 23, 282 (1944)CrossRefGoogle Scholar
  139. 139.
    J.G. Graeme, Photodiode Amplifiers: OP AMP Solutions (McGraw Hill Professional, 1996) ISBN 9780070242470Google Scholar
  140. 140.
    V.M. Gehman et al., Nucl. Instrum. Methods A 654, 116 (2011)ADSCrossRefGoogle Scholar
  141. 141.
    A. Wright, P. Mosteiro, B. Loer, F.P. Calaprice, Nucl. Instrum. Methods A 644, 18 (2011)ADSCrossRefGoogle Scholar
  142. 142.
    C. Buck, M. Yeh, J. Phys. G 43, 093001 (2016)ADSCrossRefGoogle Scholar
  143. 143.
    G. Bentoumi et al., AECL Nucl. Rev. 1, 57 (2012)CrossRefGoogle Scholar
  144. 144.
    Z. Chang et al., Nucl. Instrum. Methods A 769, 112 (2015)ADSCrossRefGoogle Scholar
  145. 145.
    C.D. Bass et al., Appl. Radiat. Isot. 77, 130 (2013)CrossRefGoogle Scholar
  146. 146.
    B.R. Kim et al., J. Kor. Phys. Soc. 66, 768 (2015)ADSCrossRefGoogle Scholar
  147. 147.
    B.R. Kim et al., Phys. Scr. 90, 055302 (2015)ADSCrossRefGoogle Scholar
  148. 148.
    J. Ashenfelter et al., JINST 10, P11004 (2015)CrossRefGoogle Scholar
  149. 149.
    F. An et al., J. Phys. G 43, 030401 (2016)ADSCrossRefGoogle Scholar
  150. 150.
    G. Alimonti et al., Nucl. Instrum. Methods A 600, 568 (2009)ADSCrossRefGoogle Scholar
  151. 151.
    S. Aiello et al., IEEE Trans. Nucl. Sci. 59, 1259 (2012)ADSCrossRefGoogle Scholar
  152. 152.
    W.H. Lippincott et al., Phys. Rev. C 81, 045803 (2010)ADSCrossRefGoogle Scholar
  153. 153.
    L.W. Kastens, S.B. Cahn, A. Manzur, D.N. McKinsey, Phys. Rev. C 80, 045809 (2009)ADSCrossRefGoogle Scholar
  154. 154.
    D. Vénos, O. Dragoun, A. Spalek, M. Vobecký, Nucl. Instrum. Methods A 560, 352 (2006)ADSCrossRefGoogle Scholar
  155. 155.
    D. Vénos, A. Spalek, O. Lebeda, M. Fišer, Appl. Radiat. Isot. 63, 323 (2005)CrossRefGoogle Scholar
  156. 156.
    S.-C. Wu, Nucl. Data Sheets 92, 893 (2001)ADSCrossRefGoogle Scholar
  157. 157.
    Thermo Fisher Scientific, Inc., Thermoscientific API 120 Neutron Generators (2015)Google Scholar
  158. 158.
    D.L. Chichester, M. Lemchak, J.D. Simpson, Nucl. Instrum. Methods B 241, 753 (2005)ADSCrossRefGoogle Scholar
  159. 159.
    J. Liu et al., Nucl. Instrum. Methods A 797, 260 (2015)ADSCrossRefGoogle Scholar
  160. 160.
    I. Ostrovskiy, Measuring the neutrino mixing angle theta-13 with the double chooz far detector (University of Alabama Libraries, 2012)Google Scholar
  161. 161.
    R.F. Lang et al., JINST 11, P04004 (2016)CrossRefGoogle Scholar
  162. 162.
    A.S. Chepurnov, M.B. Gromov, A.F. Shamarin, J. Phys. Conf. Ser. 675, 012008 (2016)CrossRefGoogle Scholar
  163. 163.
    J.S. Kapustinsky et al., Nucl. Instrum. Methods A 241, 612 (1985)ADSCrossRefGoogle Scholar
  164. 164.
    I.A. Belolaptikov et al., Astropart. Phys. 7, 263 (1997)ADSCrossRefGoogle Scholar
  165. 165.
    D.N. Spergel, Phys. Rev. D 37, 1353 (1988)ADSCrossRefGoogle Scholar
  166. 166.
    P. Gondolo, Phys. Rev. D 66, 103513 (2002)ADSCrossRefGoogle Scholar
  167. 167.
    B. Morgan, A.M. Green, N.J.C. Spooner, Phys. Rev. D 71, 103507 (2005)ADSCrossRefGoogle Scholar
  168. 168.
    K. Freese, P. Gondolo, H.J. Newberg, Phys. Rev. D 71, 043516 (2005)ADSCrossRefGoogle Scholar
  169. 169.
    G. Jaffé, Ann. Phys. 393, 977 (1929)CrossRefGoogle Scholar
  170. 170.
    G. Jaffé, Ann. Phys. 347, 303 (1913)CrossRefGoogle Scholar
  171. 171.
    G. Jaffé, Radium 10, 126 (1913)CrossRefGoogle Scholar
  172. 172.
    D.W. Swan, Proc. Phys. Soc. 85, 1297 (1965)ADSCrossRefGoogle Scholar
  173. 173.
    A. Hitachi, J.A. LaVerne, T. Doke, Phys. Rev. B 46, 540 (1992)ADSCrossRefGoogle Scholar
  174. 174.
    B. Rossi et al., JINST 11, C02041 (2016)CrossRefGoogle Scholar
  175. 175.
    J. Anderson et al., J. Phys. Conf. Ser. 664, 082050 (2015)CrossRefGoogle Scholar
  176. 176.
    D.S. Leonard et al., Nucl. Instrum. Methods A 591, 490 (2008)ADSCrossRefGoogle Scholar
  177. 177.
    A. Aguilar-Arevalo et al., JINST 10, P08014 (2015)CrossRefGoogle Scholar
  178. 178.
    B.D. LaFerriere, T.C. Maiti, I.J. Arnquist, E.W. Hoppe, Nucl. Instrum. Methods A 775, 93 (2015)ADSCrossRefGoogle Scholar
  179. 179.
    J.B. Albert et al., Phys. Rev. C 92, 015503 (2015)ADSCrossRefGoogle Scholar
  180. 180.
    A. Seifert et al., J. Radioanal. Nucl. Chem. 296, 915 (2012)CrossRefGoogle Scholar
  181. 181.
    G. Zuzel et al., Nucl. Instrum. Methods A 498, 240 (2003)ADSCrossRefGoogle Scholar
  182. 182.
    V. Álvarez et al., JINST 8, T01002 (2013)ADSGoogle Scholar
  183. 183.
    E.W. Hoppe et al., Nucl. Instrum. Methods A 579, 486 (2007)ADSCrossRefGoogle Scholar
  184. 184.
    J. Argyriades et al., Nucl. Instrum. Methods A 622, 120 (2010)ADSCrossRefGoogle Scholar
  185. 185.
    M. Misiaszek et al., Appl. Radiat. Isot. 81, 146 (2013)CrossRefGoogle Scholar
  186. 186.
    G. Zuzel, M. Wójcik, Nucl. Instrum. Methods A 676, 140 (2012)ADSCrossRefGoogle Scholar
  187. 187.
    J.W. Grate, presentation at LRT2015 (2015)Google Scholar
  188. 188.
    J. Benziger et al., Nucl. Instrum. Methods A 582, 509 (2007)ADSCrossRefGoogle Scholar
  189. 189.
    B. Aharmim et al., Phys. Rev. Lett. 101, 111301 (2008)ADSCrossRefGoogle Scholar
  190. 190.
    A. Nachab, AIP Conf. Proc. 897, 35 (2007) ISSN 0094-243XADSCrossRefGoogle Scholar
  191. 191.
    Y. Takeuchi et al., Nucl. Instrum. Methods A 421, 334 (1999)ADSCrossRefGoogle Scholar
  192. 192.
    J. Kiko, Nucl. Instrum. Methods A 460, 272 (2001)ADSCrossRefGoogle Scholar
  193. 193.
    H. Simgen, G. Heusser, M. Laubenstein, G. Zuzel, Int. J. Mod. Phys. A 29, 1442009 (2014)ADSCrossRefGoogle Scholar
  194. 194.
    M. Agostini et al., Eur. Phys. J. C 74, 2764 (2014)ADSCrossRefGoogle Scholar
  195. 195.
    N. Abgrall et al., Adv. High En. Phys. 2014, 365432:1 (2014)Google Scholar
  196. 196.
    G. Bellini et al., Nature 512, 383 (2014)ADSCrossRefGoogle Scholar
  197. 197.
    H.M. Araújo et al., Astropart. Phys. 35, 495 (2012)ADSCrossRefGoogle Scholar
  198. 198.
    E. Aprile et al., Astropart. Phys. 35, 43 (2011)ADSCrossRefGoogle Scholar
  199. 199.
    E. Aprile et al., J. Phys. G 40, 115201 (2013)ADSCrossRefGoogle Scholar
  200. 200.
    J.C. Loach et al., AIP Conf. Proc. 1549, 8 (2013) ISSN 0094-243XADSCrossRefGoogle Scholar
  201. 201.
    J. Street et al., AIP Conf. Proc. 1672, 150004 (2015) ISSN 0094-243XCrossRefGoogle Scholar
  202. 202.
    M. Wójcik, W. Wlazło, G. Zuzel, G. Heusser, Nucl. Instrum. Methods A 449, 158 (2000)ADSCrossRefGoogle Scholar
  203. 203.
    J. Boger et al., Nucl. Instrum. Methods A 449, 172 (2000)ADSCrossRefGoogle Scholar
  204. 204.
    C.J. Martoff, P.D. Lewin, Comp. Phys. Comm. 72, 96 (1992)ADSCrossRefGoogle Scholar
  205. 205.
    J.J. Back, Y.A. Ramachers, Nucl. Instrum. Methods A 586, 286 (2008)ADSCrossRefGoogle Scholar
  206. 206.
    A. Empl, E.V. Hungerford, arXiv:1407.6628v2 (2014)Google Scholar
  207. 207.
    D. Mei, Z.B. Yin, L.C. Stonehill, A. Hime, Astropart. Phys. 30, 12 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • C. E. Aalseth
    • 1
  • F. Acerbi
    • 2
    • 3
  • P. Agnes
    • 4
  • I. F. M. Albuquerque
    • 5
  • T. Alexander
    • 1
  • A. Alici
    • 6
    • 7
    • 8
  • A. K. Alton
    • 9
  • P. Antonioli
    • 7
  • S. Arcelli
    • 7
    • 8
  • R. Ardito
    • 10
    • 11
  • I. J. Arnquist
    • 1
  • D. M. Asner
    • 1
  • M. Ave
    • 5
  • H. O. Back
    • 1
  • A. I. Barrado Olmedo
    • 12
  • G. Batignani
    • 13
    • 14
  • E. Bertoldo
    • 15
  • S. Bettarini
    • 13
    • 14
  • M. G. Bisogni
    • 13
    • 14
  • V. Bocci
    • 16
  • A. Bondar
    • 17
    • 18
  • G. Bonfini
    • 19
  • W. Bonivento
    • 20
  • M. Bossa
    • 21
    • 19
  • B. Bottino
    • 22
    • 23
  • M. Boulay
    • 71
  • R. Bunker
    • 1
  • S. Bussino
    • 24
    • 25
  • A. Buzulutskov
    • 17
    • 18
  • M. Cadeddu
    • 26
    • 20
  • M. Cadoni
    • 26
    • 20
  • A. Caminata
    • 23
  • N. Canci
    • 4
    • 19
  • A. Candela
    • 19
  • C. Cantini
    • 27
  • M. Caravati
    • 26
    • 20
  • M. Cariello
    • 23
  • M. Carlini
    • 19
  • M. Carpinelli
    • 28
    • 29
  • A. Castellani
    • 10
    • 11
  • S. Catalanotti
    • 30
    • 31
  • V. Cataudella
    • 30
    • 31
  • P. Cavalcante
    • 19
    • 32
  • S. Cavuoti
    • 30
    • 31
  • R. Cereseto
    • 23
  • A. Chepurnov
    • 33
  • C. Cicalò
    • 20
  • L. Cifarelli
    • 6
    • 7
    • 8
  • M. Citterio
    • 11
  • A. G. Cocco
    • 31
  • M. Colocci
    • 7
    • 8
  • S. Corgiolu
    • 35
    • 20
  • G. Covone
    • 30
    • 31
  • P. Crivelli
    • 27
  • I. D’Antone
    • 7
  • M. D’Incecco
    • 19
  • D. D’Urso
    • 28
  • M. D. Da Rocha Rolo
    • 34
  • M. Daniel
    • 12
  • S. Davini
    • 21
    • 19
    • 23
  • A. de Candia
    • 30
    • 31
  • S. De Cecco
    • 16
    • 42
  • M. De Deo
    • 19
  • G. De Filippis
    • 30
    • 31
  • G. De Guido
    • 37
    • 11
  • G. De Rosa
    • 30
    • 31
  • G. Dellacasa
    • 34
  • M. Della Valle
    • 38
    • 31
  • P. Demontis
    • 28
    • 29
    • 39
  • A. Derbin
    • 40
  • A. Devoto
    • 26
    • 20
  • F. Di Eusanio
    • 41
  • G. Di Pietro
    • 19
    • 11
  • C. Dionisi
    • 16
    • 42
  • A. Dolgov
    • 18
  • I. Dormia
    • 37
    • 11
  • S. Dussoni
    • 14
    • 13
  • A. Empl
    • 4
  • M. Fernandez Diaz
    • 12
  • A. Ferri
    • 2
    • 3
  • C. Filip
    • 44
  • G. Fiorillo
    • 30
    • 31
  • K. Fomenko
    • 45
  • D. Franco
    • 46
  • G. E. Froudakis
    • 47
  • F. Gabriele
    • 19
  • A. Gabrieli
    • 28
    • 29
  • C. Galbiati
    • 41
    • 11
  • P. Garcia Abia
    • 12
  • A. Gendotti
    • 27
  • A. Ghisi
    • 10
    • 11
  • S. Giagu
    • 16
    • 42
  • P. Giampa
    • 43
  • G. Gibertoni
    • 37
    • 11
  • C. Giganti
    • 36
  • M. A. Giorgi
    • 14
    • 13
  • G. K. Giovanetti
    • 41
  • M. L. Gligan
    • 44
  • A. Gola
    • 2
    • 3
  • O. Gorchakov
    • 45
  • A. M. Goretti
    • 19
  • F. Granato
    • 48
  • M. Grassi
    • 13
  • J. W. Grate
    • 1
  • G. Y. Grigoriev
    • 49
  • M. Gromov
    • 33
  • M. Guan
    • 50
  • M. B. B. Guerra
    • 51
  • M. Guerzoni
    • 7
  • M. Gulino
    • 52
    • 29
  • R. K. Haaland
    • 53
  • A. Hallin
    • 72
  • B. Harrop
    • 41
  • E. W. Hoppe
    • 1
  • S. Horikawa
    • 27
  • B. Hosseini
    • 20
  • D. Hughes
    • 41
  • P. Humble
    • 1
  • E. V. Hungerford
    • 4
  • An. Ianni
    • 41
    • 19
  • C. Jillings
    • 73
    • 74
  • T. N. Johnson
    • 54
  • K. Keeter
    • 51
  • C. L. Kendziora
    • 55
  • S. Kim
    • 48
  • G. Koh
    • 41
  • D. Korablev
    • 45
  • G. Korga
    • 4
    • 19
  • A. Kubankin
    • 56
  • M. Kuss
    • 13
  • M. Kuźniak
    • 71
  • M. La Commara
    • 30
    • 31
  • B. Lehnert
    • 71
  • X. Li
    • 41
  • M. Lissia
    • 20
  • G. U. Lodi
    • 37
    • 11
  • B. Loer
    • 1
  • G. Longo
    • 30
    • 31
  • P. Loverre
    • 16
    • 42
  • R. Lussana
    • 57
    • 11
  • L. Luzzi
    • 58
    • 11
  • Y. Ma
    • 50
  • A. A. Machado
    • 59
  • I. N. Machulin
    • 49
    • 60
  • A. Mandarano
    • 21
    • 19
  • L. Mapelli
    • 41
  • M. Marcante
    • 61
    • 3
    • 2
  • A. Margotti
    • 7
  • S. M. Mari
    • 24
    • 25
  • M. Mariani
    • 58
    • 11
  • J. Maricic
    • 62
  • C. J. Martoff
    • 48
  • M. Mascia
    • 35
    • 20
  • M. Mayer
    • 1
  • A. B. McDonald
    • 75
  • A. Messina
    • 16
    • 42
  • P. D. Meyers
    • 41
  • R. Milincic
    • 62
  • A. Moggi
    • 13
  • S. Moioli
    • 37
    • 11
  • J. Monroe
    • 64
  • A. Monte
    • 64
  • M. Morrocchi
    • 14
    • 13
  • B. J. Mount
    • 51
  • W. Mu
    • 27
  • V. N. Muratova
    • 40
  • S. Murphy
    • 27
  • P. Musico
    • 23
  • R. Nania
    • 6
    • 7
  • A. Navrer Agasson
    • 36
  • I. Nikulin
    • 56
  • V. Nosov
    • 17
    • 18
  • A. O. Nozdrina
    • 49
    • 60
  • N. N. Nurakhov
    • 49
  • A. Oleinik
    • 56
  • V. Oleynikov
    • 17
    • 18
  • M. Orsini
    • 19
  • F. Ortica
    • 65
    • 66
  • L. Pagani
    • 22
    • 23
  • M. Pallavicini
    • 22
    • 23
  • S. Palmas
    • 35
    • 20
  • L. Pandola
    • 29
  • E. Pantic
    • 54
  • E. Paoloni
    • 13
    • 14
  • G. Paternoster
    • 2
    • 3
  • V. Pavletcov
    • 33
  • F. Pazzona
    • 28
    • 29
  • S. Peeters
    • 76
  • K. Pelczar
    • 19
  • L. A. Pellegrini
    • 37
    • 11
  • N. Pelliccia
    • 65
    • 66
  • F. Perotti
    • 10
    • 11
  • R. Perruzza
    • 19
  • V. Pesudo
    • 12
  • C. Piemonte
    • 2
    • 3
  • F. Pilo
    • 13
  • A. Pocar
    • 64
  • T. Pollmann
    • 77
  • D. Portaluppi
    • 57
    • 11
  • D. A. Pugachev
    • 49
  • H. Qian
    • 41
  • B. Radics
    • 27
  • F. Raffaelli
    • 13
  • F. Ragusa
    • 68
    • 11
  • M. Razeti
    • 20
  • A. Razeto
    • 19
  • V. Regazzoni
    • 61
    • 3
    • 2
  • C. Regenfus
    • 27
  • B. Reinhold
    • 62
  • A. L. Renshaw
    • 4
  • M. Rescigno
    • 16
  • F. Retière
    • 43
  • Q. Riffard
    • 46
  • A. Rivetti
    • 34
  • S. Rizzardini
    • 41
  • A. Romani
    • 65
    • 65
  • L. Romero
    • 12
  • B. Rossi
    • 31
  • N. Rossi
    • 19
  • A. Rubbia
    • 27
  • D. Sablone
    • 41
    • 19
  • P. Salatino
    • 69
    • 31
  • O. Samoylov
    • 45
  • E. Sánchez García
    • 12
  • W. Sands
    • 41
  • S. Sanfilippo
    • 24
    • 25
  • M. Sant
    • 28
    • 29
  • R. Santorelli
    • 12
  • C. Savarese
    • 21
    • 19
  • E. Scapparone
    • 7
  • B. Schlitzer
    • 54
  • G. Scioli
    • 7
    • 8
  • E. Segreto
    • 59
  • A. Seifert
    • 1
  • D. A. Semenov
    • 40
  • A. Shchagin
    • 56
  • L. Shekhtman
    • 17
    • 18
  • E. Shemyakina
    • 17
    • 18
  • A. Sheshukov
    • 45
  • M. Simeone
    • 69
    • 31
  • P. N. Singh
    • 4
  • P. Skensved
    • 75
  • M. D. Skorokhvatov
    • 49
    • 60
  • O. Smirnov
    • 45
  • G. Sobrero
    • 23
  • A. Sokolov
    • 17
    • 18
  • A. Sotnikov
    • 45
  • F. Speziale
    • 29
  • R. Stainforth
    • 71
  • C. Stanford
    • 41
  • G. B. Suffritti
    • 28
    • 29
    • 39
  • Y. Suvorov
    • 70
    • 19
    • 49
  • R. Tartaglia
    • 19
  • G. Testera
    • 23
  • A. Tonazzo
    • 46
  • A. Tosi
    • 57
    • 11
  • P. Trinchese
    • 30
    • 31
  • E. V. Unzhakov
    • 40
  • A. Vacca
    • 35
    • 20
  • E. Vázquez-Jáuregui
    • 78
  • M. Verducci
    • 16
    • 42
  • T. Viant
    • 27
  • F. Villa
    • 57
    • 11
  • A. Vishneva
    • 45
  • B. Vogelaar
    • 32
  • M. Wada
    • 41
  • J. Wahl
    • 1
  • J. Walding
    • 63
  • H. Wang
    • 70
  • Y. Wang
    • 50
    • 70
  • A. W. Watson
    • 48
  • S. Westerdale
    • 71
  • R. Williams
    • 1
  • M. M. Wojcik
    • 67
  • S. Wu
    • 27
  • X. Xiang
    • 41
  • X. Xiao
    • 70
  • C. Yang
    • 50
  • Z. Ye
    • 4
  • A. Yllera de Llano
    • 12
  • F. Zappa
    • 57
    • 11
  • G. Zappalà
    • 61
    • 3
    • 2
  • C. Zhu
    • 41
  • A. Zichichi
    • 6
    • 7
    • 8
  • M. Zullo
    • 16
  • A. Zullo
    • 16
  • G. Zuzel
    • 67
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Fondazione Bruno KesslerPovoItaly
  3. 3.Trento Institute for Fundamental Physics and ApplicationsPovoItaly
  4. 4.Department of PhysicsUniversity of HoustonHoustonUSA
  5. 5.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  6. 6.Centro Fermi Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”RomaItaly
  7. 7.INFN BolognaBolognaItaly
  8. 8.Physics DepartmentUniversità degli Studi di BolognaBolognaItaly
  9. 9.Physics DepartmentAugustana UniversitySioux FallsUSA
  10. 10.Civil and Environmental Engineering DepartmentPolitecnico di MilanoMilanoItaly
  11. 11.INFN MilanoMilanoItaly
  12. 12.CIEMATCentro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
  13. 13.INFN PisaPisaItaly
  14. 14.Physics DepartmentUniversità degli Studi di PisaPisaItaly
  15. 15.INFN Milano BicoccaMilanoItaly
  16. 16.INFN Sezione di RomaRomaItaly
  17. 17.Budker Institute of Nuclear PhysicsNovosibirskRussia
  18. 18.Novosibirsk State UniversityNovosibirskRussia
  19. 19.INFN Laboratori Nazionali del Gran SassoAssergi (AQ)Italy
  20. 20.INFN CagliariCagliariItaly
  21. 21.Gran Sasso Science InstituteL’AquilaItaly
  22. 22.Physics DepartmentUniversità degli Studi di GenovaGenovaItaly
  23. 23.INFN GenovaGenovaItaly
  24. 24.INFN Roma TreRomaItaly
  25. 25.Mathematics and Physics DepartmentUniversità degli Studi Roma TreRomaItaly
  26. 26.Physics DepartmentUniversità degli Studi di CagliariCagliariItaly
  27. 27.Institute for Particle PhysicsETH ZürichZürichSwitzerland
  28. 28.Chemistry and Pharmacy DepartmentUniversità degli Studi di SassariSassariItaly
  29. 29.INFN Laboratori Nazionali del SudCataniaItaly
  30. 30.Physics DepartmentUniversità degli Studi “Federico II” di NapoliNapoliItaly
  31. 31.INFN NapoliNapoliItaly
  32. 32.Virginia TechBlacksburgUSA
  33. 33.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  34. 34.INFN TorinoTorinoItaly
  35. 35.Department of Mechanical, Chemical, and Materials EngineeringUniversità degli StudiCagliariItaly
  36. 36.LPNHEUniversité Pierre et Marie Curie, CNRS/IN2P3, Sorbonne UniversitésParisFrance
  37. 37.Chemistry, Materials and Chemical Engineering Department “G. Natta”Politecnico di MilanoMilanoItaly
  38. 38.INAF Capodimonte Astronomical ObservatoryNapoliItaly
  39. 39.Interuniversity Consortium for Science and Technology of MaterialsFirenzeItaly
  40. 40.Saint Petersburg Nuclear Physics InstituteGatchinaRussia
  41. 41.Physics DepartmentPrinceton UniversityPrincetonUSA
  42. 42.Physics DepartmentSapienza Università di RomaRomaItaly
  43. 43.TRIUMFVancouverCanada
  44. 44.National Institute for R&D of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  45. 45.Joint Institute for Nuclear ResearchDubnaRussia
  46. 46.APCUniversité Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, USPCParisFrance
  47. 47.Department of ChemistryUniversity of CreteCreteGreece
  48. 48.Physics DepartmentTemple UniversityPhiladelphiaUSA
  49. 49.National Research Centre Kurchatov InstituteMoscowRussia
  50. 50.Institute of High Energy PhysicsBeijingChina
  51. 51.School of Natural SciencesBlack Hills State UniversitySpearfishUSA
  52. 52.Engineering and Architecture FacultyUniversità di Enna KoreEnnaItaly
  53. 53.Department of Physics and EngineeringFort Lewis CollegeDurangoUSA
  54. 54.Department of PhysicsUniversity of CaliforniaDavisUSA
  55. 55.Fermi National Accelerator LaboratoryBataviaUSA
  56. 56.Radiation Physics LaboratoryBelgorod National Research UniversityBelgorodRussia
  57. 57.Electronics, Information, and Bioengineering DepartmentPolitecnico di MilanoMilanoItaly
  58. 58.Energy DepartmentPolitecnico di MilanoMilanoItaly
  59. 59.Physics InstituteUniversidade Estadual de CampinasCampinasBrazil
  60. 60.National Research Nuclear University MEPhIMoscowRussia
  61. 61.Physics DepartmentUniversità degli Studi di TrentoPovoItaly
  62. 62.Department of Physics and AstronomyUniversity of HawaiiHonoluluUSA
  63. 63.Department of Physics, Royal HollowayUniversity of LondonSurreyUK
  64. 64.Amherst Center for Fundamental Interactions and Physics DepartmentUniversity of MassachusettsAmherstUSA
  65. 65.Chemistry, Biology and Biotechnology DepartmentUniversità degli Studi di PerugiaPerugiaItaly
  66. 66.INFN PerugiaPerugiaItaly
  67. 67.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakowPoland
  68. 68.Physics DepartmentUniversità degli Studi di MilanoMilanoItaly
  69. 69.Chemical, Materials, and Industrial Production Engineering DepartmentUniversità degli Studi “Federico II” di NapoliNapoliItaly
  70. 70.Physics and Astronomy DepartmentUniversity of CaliforniaLos AngelesUSA
  71. 71.Department of PhysicsCarleton UniversityOttawaCanada
  72. 72.Department of PhysicsUniversity of AlbertaEdmontonCanada
  73. 73.Department of Physics and AstronomyLaurentian UniversitySudburyCanada
  74. 74.SNOLABLivelyCanada
  75. 75.Department of Physics, Engineering Physics and AstronomyQueen’s UniversityKingstonCanada
  76. 76.Physics and AstronomyUniversity of SussexBrightonUK
  77. 77.Physik DepartmentTechnische Universität MünchenMunichGermany
  78. 78.Instituto de FísicaUniversidad Nacional Autónoma de México (UNAM)MéxicoMexico

Personalised recommendations