A new approach on anti-vortex devices at water intakes including a submerged water jet

  • Ahmad Tahershamsi
  • Hassan Rahimzadeh
  • Morteza Monshizadeh
  • Hamed Sarkardeh
Regular Article

Abstract.

A new approach on anti-vortex methods as hydraulic-based anti-vortex was investigated experimentally in the present study. In the investigated method, a submerged water jet is used as the anti-vortex mechanism. The added jet acts as a source of external momentum. This leads to change the intake-induced hydrodynamic pattern in the near-field of the intake structure, which can prevent formation of undesirable intake vortices. The experiments were carried out on a horizontal pipe intake. By performing 570 test cases in two different categories, including the inclined jet with respect to the axis of the intake, and the inclined jet with respect to the water surface, the effects of the jet inclination angle on the anti-vortex performance were investigated. It was found that the inclined jet with respect to the water surface is the best alternative to consider as the water jet injection pattern. Results showed that using the inclined jet with respect to the water surface can simply reduce the amounts of the expected water jet momentum more than 50% compared to that of the similar condition of the horizontal injection pattern. Moreover, it was concluded that the intake critical submergence can easily be minimized using the inclined jet with respect to the water surface.

References

  1. 1.
    C.L. Wu, K.W. Chau, C. Fan, J. Hydrol. 389, 146 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    X.Y. Chen, K.W. Chau, A.O. Busari, Eng. Appl. Artif. Intell 46, 258 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Taormina, K.W. Chau, B. Sivakumar, J. Hydrol. 529, 1788 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    W.C. Wang, K.W. Chau, D.M. Xu, L. Qiu, C.C. Liu, Water Resour. Manag. 31, 461 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Sarkardeh, Chin. J. Mech. Eng. 30, 1017 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Pavelyev, A. Shtarev, J. Fluid Dyn. 40, 829 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    F. Suerich-Gulick, S.J. Gaskin, M. Villeneuve, É. Parkinson, J. Hydraul. Eng. 140, 291 (2014)CrossRefGoogle Scholar
  8. 8.
    G. Möller, M. Detert, R.M. Boes, Air entrainment due to vortices: State of the art, in Proceedings of the 2nd IAHR European Congress Munich, Germany (2012)Google Scholar
  9. 9.
    B. Papillon, J. Kirejczyk, M. Sabourin, Atmospheric air admission in hydro-turbines, in Proceedings of the Hydro-Vision International, Charlotte, North California, USA (2000)Google Scholar
  10. 10.
    H. Sarkardeh, A.R. Zarrati, R. Roshan, J. Hydraul. Res. 48, 108 (2010)CrossRefGoogle Scholar
  11. 11.
    H. Sarkardeh, E. Jabbari, A.R. Zarrati, S. Tavakkol, J. Water Manag. 164, 193 (2013)Google Scholar
  12. 12.
    M. Azarpira, H. Sarkardeh, S. Tavakkol, R. Roshan, H. Bakhshi, Sadhana 39, 1201 (2014)CrossRefGoogle Scholar
  13. 13.
    M.R. Khanarmuei, H. Rahimzadeh, A.R. Kakuei, H. Sarkardeh, Sadhana 41, 1055 (2016)Google Scholar
  14. 14.
    H. Sarkardeh, A.R. Zarrati, E. Jabbari, M. Marosi, J. Eng. Appl. Comput. Fluid Mech. 8, 598 (2014)Google Scholar
  15. 15.
    H. Sarkardeh, Meccanica 52, 3629 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Knauss, Swirling flow problems at intakes, IAHR Hydraulic Structures Manual 1 (Balkema, Rotterdam, Netherlands, 1987)Google Scholar
  17. 17.
    G. Möller, M. Detert, R.M. Boes, J. Hydraul. Eng. 141, 04015026 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Monshizadeh, A. Tahershamsi, H. Rahimzadeh, H. Sarkardeh, J. Modares Mech. Eng. 17, 59 (2017) (in Persian)Google Scholar
  19. 19.
    J.L. Gordon, J. Water Power 22, 137 (1970)Google Scholar
  20. 20.
    Y.R. Reddy, J.A. Pickford, J. Water Power 3, 108 (1972)Google Scholar
  21. 21.
    M.B. Amphlett, Air-entraining vortices at a horizontal intake, Report No. OD/7 HRS Wallingford UK (1976)Google Scholar
  22. 22.
    S.M. Borghei, A.R. Kabiri-Samani, J. Sci. Iran. 17, 89 (2010)Google Scholar
  23. 23.
    R. Carriveau, G. Kopp, R. Baddour, J. Hydraul. Res. 47, 486 (2009)CrossRefGoogle Scholar
  24. 24.
    C.H. Sohn, N.G. Ju, B.H.L. Gowda, J. Visual. 12, 347 (2009)CrossRefGoogle Scholar
  25. 25.
    F. Trivellato, J. Opt. Lasers Eng. 48, 589 (2010)CrossRefGoogle Scholar
  26. 26.
    S.M. Amiri, A.R. Zarrati, R. Roshan, H. Sarkardeh, Proc. Inst. Civ. Eng. Water Manag. 164, 193 (2011)CrossRefGoogle Scholar
  27. 27.
    B. Khadem Rabe, S.H. Ghoreishi Najafabadi, H. Sarkardeh, Proc. Inst. Civ. Eng. Water Manag. 171, 18 (2018)CrossRefGoogle Scholar
  28. 28.
    B. Khadem Rabe, S.H. Ghoreishi Najafabadi, H. Sarkardeh, Curr. Sci. 113, 141 (2017)CrossRefGoogle Scholar
  29. 29.
    M. Monshizadeh, A. Tahershamsi, H. Rahimzadeh, H. Sarkardeh, Eur. Phys. J. Plus 132, 329 (2017)CrossRefGoogle Scholar
  30. 30.
    M. Monshizadeh, A. Tahershamsi, H. Rahimzadeh, H. Sarkardeh, Intl. J. Civ. Eng. (2017)  https://doi.org/10.1007/s40999-017-0266-8
  31. 31.
    J.A. Odgaard, J. Hydraul. Eng. 112, 610 (1986)CrossRefGoogle Scholar
  32. 32.
    L.R. Daggett, G.H. Keulegan, J. Hydraul. Eng. 100, 561 (1974)Google Scholar
  33. 33.
    M. Padmanabhan, G.E. Hecker, J. Hydraul. Div. 110, 1540 (1984)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ahmad Tahershamsi
    • 1
  • Hassan Rahimzadeh
    • 2
  • Morteza Monshizadeh
    • 1
  • Hamed Sarkardeh
    • 3
  1. 1.Department of Civil EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  2. 2.Department of Mechanical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  3. 3.Department of Civil Engineering, Faculty of EngineeringHakim Sabzevari UniversitySabzevarIran

Personalised recommendations