Mechanistic investigation for the axisymmetric transport of nanocomposite molybdenum disulfide-silicon dioxide in ethylene glycol and sphericity assessment of nanoscale particles

  • Ehtsham Azhar
  • E. N. Maraj
  • Z. Iqbal
Regular Article


The present paper provides a comparative analysis between nano and hybrid nanofluid axisymmetric flow towards a radially stretching porous surface along with heat transfer mechanism in the presence of magnetic force and internal heat source/sink. The effect of various shapes of nanoparticles is also taken into account. The physical flow problem is modeled and presented in cylindrical coordinates. Governing nonlinear equations are converted into a system of differential equations by using the similarity approach. Numerical results are computed by means of a well-established and stable numerical procedure. The main implication of this research is the influence of nanoparticle shapes, internal heating and applied magnetic field on fluid flow and heat transfer. Computational results are extracted out with the help of mathematics software MATLAB. One of the key findings of the present analysis is the fact that the maximum temperature is achieved for lamina-shaped SiO2 and MoS2-SiO2 nanoparticles and the lowest temperature is attained in the case of sphere-shaped nanoparticles.


  1. 1.
    B.C. Sakiadis, AIChE J. 7, 26 (1961)CrossRefGoogle Scholar
  2. 2.
    A. Malvandi, F. Hedayati, D.D. Ganji, Alex. Eng. J. (2017)
  3. 3.
    A. Malvandi, F. Hedayati, M.R.H. Nobari, J. Appl. Fluid Mech. 7, 375 (2014)Google Scholar
  4. 4.
    A. Malvandi, F. Hedayati, D.D. Ganji, Powder Technol. 253, 377 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Malvandi, F. Hedayati, D.D. Ganji, Y. Rostamiyan, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 228, 1175 (2013)CrossRefGoogle Scholar
  6. 6.
    F. Selimefendigil, H.F. Öztop, Int. J. Mech. Sci. 118, 113 (2016)CrossRefGoogle Scholar
  7. 7.
    F. Selimefendigil, H. Öztop, Int. J. Heat Mass Transfer 98, 40 (2016)CrossRefGoogle Scholar
  8. 8.
    P.D. Ariel, Int. J. Eng. Sci. 39, 529 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Hayat, M. Sajid, Int. J. Heat Mass Transfer 50, 75 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Sajid, I. Ahmad, T. Hayat, M. Ayub, Commun. Nonlinear Sci. Numer. Simul. 13, 2193 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    I. Ahmad, M. Sajid, T. Hayat, M. Ayub, Comput. Math. Appl. 56, 1351 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Sahoo, Appl. Math. Mech. 31, 159 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Mustafa, T. Hayat, A. Alsaedi, Curr. Nanosci. 8, 328 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J. Buongiorno, ASME J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
  15. 15.
    F. Selimefendigil, H. Öztop, Adv. Powder Technol. 26, 1663 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Hayat, A. Shafiq, A. Alsaedi, M. Awais, Comput. Fluids 86, 103 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Mustafa, J.A. Khan, T. Hayat, A. Alsaedi, Int. J. Non-Linear Mech. 71, 22 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    A. Shahzad, J. Ahmed, M. Khan, Alex. Eng. J. 55, 2423 (2016)CrossRefGoogle Scholar
  19. 19.
    S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, USA (1995) (ASME, 1995) pp. 99--105, FED 231/MD 66Google Scholar
  20. 20.
    E. Abu-Nada, Z. Masoud, H.F. Oztop, A. Campo, Int. J. Therm. Sci. 49, 479 (2010)CrossRefGoogle Scholar
  21. 21.
    A.V. Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 288, 243 (2010)CrossRefGoogle Scholar
  22. 22.
    W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)CrossRefGoogle Scholar
  23. 23.
    N. Bachok, A. Ishak, I. Pop, Acta. Mech. Sin. 28, 34 (2012)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    P.S. Reddy, A.J. Chamkha, Adv. Power Technol. 13, 39 (2015)Google Scholar
  25. 25.
    R. Eid Mohamed, J. Mol. Liq. 220, 718 (2016)CrossRefGoogle Scholar
  26. 26.
    M.J. Nine, B. Munkhbayar, M.S. Rahman, H. Chung, H. Jeong, Math. Chem. Phys. 141, 636 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Toghraie, V.A. Chaharsoghi, M. Afrand, J. Therm. Anal. Calorim 125, 527 (2016)CrossRefGoogle Scholar
  28. 28.
    F. Selimefendigil, H. Öztop, Int. J. Heat Mass Transfer 98, 40 (2016)CrossRefGoogle Scholar
  29. 29.
    Z. Iqbal, E. Azhar, E.N. Maraj, Physica E 91, 128 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    F. Selimefendigil, H. Öztop, J. Magn. & Magn. Mater. 417, 327 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Z. Iqbal, E.N. Maraj, E. Azhar, Z. Mehmood, Adv. Powder Technol. 28, 2332 (2017)CrossRefGoogle Scholar
  32. 32.
    F. Selimefendigil, H. Öztop, Int. J. Heat Mass Transfer 108, 156 (2017)CrossRefGoogle Scholar
  33. 33.
    Z. Iqbal, Z. Mehmood, E. Azhar, E.N. Maraj, J. Mol. Liq. 234, 296 (2017)CrossRefGoogle Scholar
  34. 34.
    F. Selimefendigil, H. Öztop, Eur. J. Mech. B/Fluids 61, 77 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Z. Iqbal, N.S. Akbar, E. Azhar, E.N. Maraj, Alex. Eng. J. (2017)
  36. 36.
    F. Selimefendigil, H. Öztop, J. Therm. Sci. Eng. Appl. 9, 021016 (2017)CrossRefGoogle Scholar
  37. 37.
    F. Selimefendigil, H. Öztop, Int. Commun. Heat Mass Transfer 89, 211 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Sarkar, P. Ghosh, A. Adil, Renew. Sustain. Energy Rev. 43, 164 (2015)CrossRefGoogle Scholar
  39. 39.
    H. Xie, B. Jiang, B. Liu, Q. Wang, J. Xu, F. Pan, Nanoscale Res. Lett. 11, 329 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R.H. Walker, H.G. Xing, ACS Nano 8, 986 (2014)CrossRefGoogle Scholar
  41. 41.
    S.F.A. Talib, W.H. Azmi, I. Zakaria, W.A.N.W. Mohamed, A.M.I. Mamat, H. Ismail, W.R.W. Daud, Energy Proc. 79, 366 (2015)CrossRefGoogle Scholar
  42. 42.
    S.P.A. Devi, S.S.U. Devi, Int. J. Non-linear Sci. Numer. Simul. 17, 249 (2016)Google Scholar
  43. 43.
    Z. Iqbal, E.N. Maraj, E. Azhar, Z. Mehmood, J. Taiwan Inst. Chem. Eng. 81, 150 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesHITEC University TaxilaTaxilaPakistan

Personalised recommendations