Skip to main content
Log in

Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain \((-\infty, \infty)\), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

  2. S.G. Samko, A.A. Kilbas, O.I. Maritchev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993)

  3. J. Smoller, Shock waves and reaction-diffusion equations, in Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) (Springer-Verlag, New York, 1994)

  4. N.F. Britton, Reaction-Diffusion Equations and their Applications to Biology (Academic Press Inc, London, 1986)

  5. P. Grindrod, The Theory and Applications of Reaction-Diffusion Equations, in Oxford Applied Mathematics and Computing Science Series (The Clarendon Press Oxford University Press, New York, 1996)

  6. I.M. Sokolov, J. Klafter, Chaos 15, 26 (2005)

    Article  Google Scholar 

  7. A. Bueno-Orovio, D. Kay, K. Burrage, BIT Numer. Math. 54, 937 (2014)

    Article  Google Scholar 

  8. K.M. Furati, M. Yousuf, A.Q.M. Khaliq, Int. J. Comput. Math. (2017), https://doi.org/10.1080/00207160.2017.1404037

  9. A.Q.M. Khaliq, X. Liang, K.M. Furati, Numer. Algorithms 75, 147 (2017)

    Article  MathSciNet  Google Scholar 

  10. X. Liang, A.Q.M. Khaliq, H. Bhatt, K.M. Furati, Numer. Algorithms 76, 939 (2017)

    Article  MathSciNet  Google Scholar 

  11. E. Pindza, K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 40, 112 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer, Water Resour. Res. 39, 1022 (2003)

    ADS  Google Scholar 

  13. H.W. Choi, S.K. Chung, Y.J. Lee, Bulletin of the Korean Mathematical Society 47, 1225 (2010)

    Article  MathSciNet  Google Scholar 

  14. Z. Deng, V.P. Singh, L. Bengtsson, J. Hydraul. Eng. 130, 422 (2004)

    Article  Google Scholar 

  15. M.M. Meerschaert, H.P. Scheffler, C. Tadjeran, J. Comput. Phys. 211, 249 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, J. Comput. Phys. 213, 205 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Tadjeran, M.M. Meerschaert, J. Comput. Phys. 220, 813 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. F. Liu, V. Ahn, I. Turner, J. Comput. Appl. Math. 166, 209 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, 80 (2006)

    Article  MathSciNet  Google Scholar 

  20. F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comput. 91, 12 (2007)

    Google Scholar 

  21. Q. Yang, F. Liu, I. Turner, Appl. Math. Modell. 34, 200 (2010)

    Article  Google Scholar 

  22. Y. Zhang, D.A. Benson, M.M. Meerschaert, H.P. Scheffler, J. Stat. Phys. 123, 89 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. V.J. Ervin, N. Heuer, J.P. Roop, SIAM J. Numer. Anal. 45, 572 (2007)

    Article  MathSciNet  Google Scholar 

  24. J. Roop, J. Comput. Appl. Math. 193, 243 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, M.G. López-López, V.M. Alvarado-Mart\'inez, J. Electromagn. Waves Appl. 30, 1937 (2016)

    Article  Google Scholar 

  26. J.F. Gómez-Aguilar, T. Córdova-Fraga, J. Tórres-Jiménez, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, G.V. Guerrero-Ram\'irez, Mathematical Problems in Engineering 2016, 7845874 (2016)

    Article  Google Scholar 

  27. J.F. Gómez-Aguilar, H. Yépez-Mart\'inez, J. Torres-Jiménez, T. Córdova-Fraga, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Adv. Differ. Equ. 2017, 68 (2017)

    Article  Google Scholar 

  28. V.F. Morales-Delgado, J.F. Gómez-Aguilar, H. Yépez-Mart\'inez, D. Baleanu, R.F. Escobar-Jimenez, V.H. Olivares-Peregrino, Adv. Differ. Equ. 2016, 164 (2016)

    Article  Google Scholar 

  29. V.F. Morales-Delgado, M.A. Taneco-Hernández, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 132, 47 (2017)

    Article  Google Scholar 

  30. H. Yépez-Mart\'inez, J.F. Gomez-Aguilar, I.O. Sosaa, J.M. Reyesa, J. Torres-Jimenez, Rev. Mex. Fis. 62, 310 (2016)

    Google Scholar 

  31. J.R. Cash, A.H. Karp, ACM Trans. Math. Softw. 16, 201 (1990)

    Article  Google Scholar 

  32. S. Krogstad, J. Comput. Phys. 203, 72 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  33. K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 131, 335 (2016)

    Article  Google Scholar 

  34. D. del Castillo-Negrete, B.A. Carreras, V.E. Lynch, Phys. Rev. Lett. 91, 018302 (2003)

    Article  ADS  Google Scholar 

  35. G.G. Katul, A. Porporato, R. Nathan, M. Siqueira, M.B. Soons, D. Poggi, H.S. Horn, S.A. Levin, Am. Nat. 166, 368 (2005)

    Google Scholar 

  36. E.K. Klein, C. Lavigne, H. Picault, M. Renard, P.H. Gouyon, J. Appl. Ecol. 43, 141 (2006)

    Article  Google Scholar 

  37. A. Atangana, A. Secer, Abstract and Applied Analysis 2013, 279681 (2013)

    Google Scholar 

  38. A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)

    Article  Google Scholar 

  40. S. Das, Functional Fractional Calculus, 2nd Edition (Springer-Verlag, 2011)

  41. B. Guo, X. Pu, F. Huang, Fractional Partial Differential Equations and their Numerical Solutions (World Scientific, Singapore, 2011)

  42. Y. Luchko, J. Comput. Phys. 293, 40 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Y. Luchko, R. Gorenflo, Acta Math. Vietnam 24, 207 (1999)

    MathSciNet  Google Scholar 

  44. M.D. Ortigueira, Fractional Calculus for Scientists and Engineers (Springer, New York, 2011)

  45. X.J. Yang, Advanced Local Fractional Calculus and its Applications (World Science Publisher, New York, 2012)

  46. Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, New Jersey, 2014)

  47. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  48. K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  49. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Netherlands, 2007)

  50. T. Bakkyaraj, R. Sahadevan, Nonlinear Dyn. 80, 447 (2015)

    Article  Google Scholar 

  51. E. Sousan, C. Li, Appl. Numer. Math. 90, 22 (2015)

    Article  MathSciNet  Google Scholar 

  52. M.M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  53. K.M. Owolabi, A. Atangana, Chaos, Solitons Fractals 99, 171 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  54. J.F. Gómez-Aguilar, A. Atangana, Eur. Phys. J. Plus 132, 13 (2017)

    Article  Google Scholar 

  55. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Dover Publication, New York, 2006)

  56. H. Ye, J. Gao, Y. Ding, J. Math. Anal. Appl. 328, 1075 (2007)

    Article  MathSciNet  Google Scholar 

  57. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, Cambridge, 1998)

  58. A.K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214 (2005)

    Article  MathSciNet  Google Scholar 

  59. K.M. Owolabi, K.C. Patidar, Int. J. Differ. Equ. 2015, 485860 (2015)

    Google Scholar 

  60. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover, New York, 2001)

  61. L.N. Trefethen, Spectral Methods in MATLAB (SIAM Publications, Philadelphia, 2000)

  62. J.A.C. Weideman, S.C. Reddy, Trans. Math. Softw. 26, 465 (2001)

    Article  Google Scholar 

  63. K.M. Owolabi, A. Atangana, J. Comput. Nonlinear Dyn. 12, 031010 (2017)

    Article  Google Scholar 

  64. B. Fornberg, Driscoll, J. Comput. Phys. 155, 456 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  65. K.M. Owolabi, K.C. Patidar, Appl. Math. Comput. 240, 30 (2014)

    MathSciNet  Google Scholar 

  66. S.M. Cox, P.C. Matthews, J. Comput. Phys. 176, 430 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  67. H. Munthe-Kaas, Appl. Numer. Math. 29, 115 (1999)

    Article  MathSciNet  Google Scholar 

  68. K.M. Owolabi, K.C. Patidar, Int. J. Nonlinear Sci. Numer. Simul. 15, 437 (2014)

    Article  MathSciNet  Google Scholar 

  69. K.M. Owolabi, K.C. Patidar, Int. J. Nonlinear Sci. Numer. Simul. 17, 291 (2016)

    MathSciNet  Google Scholar 

  70. M.D. Bramson, Commun. Pure Appl. Math. 31, 531 (1978)

    Article  Google Scholar 

  71. R.A. Fisher, Ann. Eugen. 7, 353 (1937)

    Google Scholar 

  72. S.M. Allen, J.W. Cahn, Acta Metall. 27, 1085 (1979)

    Article  Google Scholar 

  73. Z. Hu, S.M. Wise, C. Wang, J.S. Lowengrub, J. Comput. Phys. 228, 5323 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  74. P. Huang, A. Abduwali, J. Appl. Math. Inf. 29, 1477 (2011)

    Google Scholar 

  75. K.M. Owolabi, K.C. Patidar, Transylvanian Rev. 24, 510 (2016)

    Google Scholar 

  76. J. Shen, X. Yang, AIMS Discr. Continuous Dyn. Syst. A 28, 1669 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, K.M. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator. Eur. Phys. J. Plus 133, 98 (2018). https://doi.org/10.1140/epjp/i2018-11951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11951-x

Navigation