Skip to main content
Log in

Analysis of the cable equation with non-local and non-singular kernel fractional derivative

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Recently a new concept of differentiation was introduced in the literature where the kernel was converted from non-local singular to non-local and non-singular. One of the great advantages of this new kernel is its ability to portray fading memory and also well defined memory of the system under investigation. In this paper the cable equation which is used to develop mathematical models of signal decay in submarine or underwater telegraphic cables will be analysed using the Atangana-Baleanu fractional derivative due to the ability of the new fractional derivative to describe non-local fading memory. The existence and uniqueness of the more generalized model is presented in detail via the fixed point theorem. A new numerical scheme is used to solve the new equation. In addition, stability, convergence and numerical simulations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, CA, 1999)

  2. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York and London, 1974)

  3. K. Diethelm, The Analysis of Fractional Differential Equations, an Application Oriented, Exposition Using Differential Operators of Caputo type, in Lecture Notes in Mathematics, nr. 2004 (Springer, Heidelbereg, 2010)

  4. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods in Series on Complexity, Nonlinearity and Chaos (World Scientific, Boston, 2012)

  5. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  6. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)

    Article  Google Scholar 

  7. M. Caputo, M. Fabrizio, J. Comput. Phys. 293, 400 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. H.M. Baskonus, T. Mekkaoui, Z. Hammouch, H. Bulut, Entropy 17, 5771 (2015)

    Article  ADS  Google Scholar 

  9. H.M. Baskonus, H. Bulut, Open Math. 13, 547 (2015)

    Article  MathSciNet  Google Scholar 

  10. H.M. Baskonus, H. Bulut, AIP Conf. Proc. 1738, 290004 (2016)

    Article  Google Scholar 

  11. H.M. Baskonus, Z. Hammouch, T. Mekkaoui, H. Bulut, AIP Conf. Proc. 1738, 290005 (2016)

    Article  Google Scholar 

  12. H. Bulut, G. Yel, H.M. Baskonus, Turk. J. Math. Comput. Sci. 5, 1 (2016)

    Google Scholar 

  13. M.T. Gencoglu, H.M. Baskonus, H. Bulut, AIP Conf. Proc. 1798, 020103 (2017)

    Article  Google Scholar 

  14. R. Najafi, G.D. Küçük, E. Çelik, Math. Methods Appl. Sci. 23, 939 (2016)

    Google Scholar 

  15. E. Çelik, E. Sefidgar, B. Shiri, Int. J. Appl. Math. Stat. 56, 23 (2017)

    MathSciNet  Google Scholar 

  16. G.D. Küçük, M. Yigider, E. Çelik, Brit. J. Appl. Sci. Technol. 4, 3653 (2014)

    Article  Google Scholar 

  17. N.M. Yagmurlu, O. Tasbozan, Y. Ucar, A. Esen, Appl. Math. Inf. Sci. Lett. 4, 19 (2016)

    Google Scholar 

  18. A. Esen, F. Bulut, Ö. Oruç, Eur. Phys. J. Plus 131, 116 (2016)

    Article  Google Scholar 

  19. A. Atangana, B. Dumitru, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  20. A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Badr Saad T. Alkahtani, Solitons Fractals 89, 547 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Atangana, Eur. Phys. J. Plus 131, 373 (2016)

    Article  Google Scholar 

  23. W. Thomson, Proc. R. Soc. London 7, 382 (1854)

    Article  Google Scholar 

  24. S. Vitali, G. Castellani, F. Mainardi, Chaos, Solitons Fractals 102, 467 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. F. Bashforth, J.C. Adams, An Attempt to Test the Theories of Capillary Action (Cambridge University Press, London, 1883)

  26. H. Jeffreys, B.S. Jeffreys, The Adams-Bashforth Method, in Methods of Mathematical Physics, 3rd edition (Cambridge University Press, England, 1988) pp. 292--293, sect. 9.11

  27. R.G. Batogna, A. Atangana, Numer. Methods Partial Differ. Equ. (2017) https://doi.org/10.1002/num.22216

  28. G.G. Dahlquist, BIT Numer. Math. 3, 27 (1963)

    Article  Google Scholar 

  29. W.E. Milne, Am. Math. Mon. Math. Assoc. Am. 33, 455 (1926)

    Article  Google Scholar 

  30. T. Von. Karman, M.A. Biot, Mathematical Methods in Engineering: An Introduction to the Mathematical Treatment of Engineering Problems (McGraw-Hill, New York, 1940)

  31. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, England, 1992)

  32. E.T. Whittaker, G. Robinson, The Numerical Solution of Differential Equations, in The Calculus of Observations: A Treatise on Numerical Mathematics (Dover, New York, 1967) pp. 363--367, chapt. 14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berat Karaagac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaagac, B. Analysis of the cable equation with non-local and non-singular kernel fractional derivative. Eur. Phys. J. Plus 133, 54 (2018). https://doi.org/10.1140/epjp/i2018-11916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11916-1

Navigation