Skip to main content
Log in

Propagation of surface waves in a spin 1/2 magnetized collisional quantum plasma half-space

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The quantum magnetohydrodynamics model, including the correction terms of the Bohm potential, quantum pressure, collision and intrinsic spin of electrons, is employed to investigate the propagation of surface waves in a semi-bounded spin 1/2 magnetized collisional quantum plasma. The parametric equation method is used to derive the highly nonlinear dispersion relation. Furthermore, the exact dispersion relation is solved numerically. It is shown that the external magnetic field increases the group and phase velocities of the surface waves in both collisionless and collisional quantum plasma, while the spin contribution leads to a decrease in the phase velocity. In the collisional quantum plasma, the damping rate of the surface waves is increased by the external magnetic field and the spin of the electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pines, J. Nucl. Energy, Part C Plasma Phys. 2, 5 (1961)

    Article  Google Scholar 

  2. D. Pines, Elementary Excitations in Solids (Perseus, 1966)

  3. W. Masood, B. Eliasson, P.K. Shukla, Phys. Rev. E 81, 066401 (2010)

    Article  ADS  Google Scholar 

  4. M. Opher, L.O. Silva, D.E. Dauger, V.K. Decyk, J.M. Dawson, Phys. Plasmas 8, 2454 (2001)

    Article  ADS  Google Scholar 

  5. Y.D. Jung, Phys. Plasmas 8, 3842 (2001)

    Article  ADS  Google Scholar 

  6. P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer, Vienna, 1990)

  7. N.C. Kluksdahl, A.M. Kriman, D.K. Ferry, C. Ringhofer, Phys. Rev. B 39, 7720 (1989)

    Article  ADS  Google Scholar 

  8. A.A.G. Driskill-Smith, D.G. Hasko, H. Ahmed, Appl. Phys. Lett. 75, 2845 (1999)

    Article  ADS  Google Scholar 

  9. H.G. Craighead, Science 290, 1532 (2000)

    Article  ADS  Google Scholar 

  10. W. Li, P.J. Tanner, T.F. Gallagher, Phys. Rev. Lett. 94, 173001 (2005)

    Article  ADS  Google Scholar 

  11. D. Kremp, T.H. Bornath, M. Bonitz, M. Schlanges, Phys. Rev. E 60, 4725 (1999)

    Article  ADS  Google Scholar 

  12. R.H. Ritchie, Phys. Rev. 106, 874 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.W. Trivelpiece, R.W. Gould, J. Appl. Phys. 30, 1784 (1959)

    Article  ADS  Google Scholar 

  14. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  15. R.J. Bray, L.E. Cram, C. Durrant, R.E. Loughhead, Plasma Loops in the Solar Corona (Cambridge University Press, 2005)

  16. N.F. Cramer, L.K. Yeung, S.V. Vladimirov, Phys. Plasmas 5, 3126 (1998)

    Article  ADS  Google Scholar 

  17. J. Hubert, S. Bordeleau, K.C. Tran, S. Michaud, B. Milette, R. Sing, J. Jalbert, D. Boudreau, M. Moisan, J. Margot, Fresenius J. Anal. Chem. 355, 494 (1996)

    Google Scholar 

  18. R.L. Guernsey, Phys. Fluids 12, 1852 (1969)

    Article  ADS  Google Scholar 

  19. M. Lazar, P.K. Shukla, A. Smolyakov, Phys. Plasmas 12, 2007 (2007)

    Google Scholar 

  20. B. Shokri, A.A. Rukhadze, Phys. Plasmas 6, 3450 (1999)

    Article  ADS  Google Scholar 

  21. B.F. Mohamed, M.A. Aziz, Int. J. Plasma Sci. Eng. 2010, 693049 (2010)

    Article  Google Scholar 

  22. B.F. Mohamed, Phys. Scr. 82, 065502 (2010)

    Article  ADS  Google Scholar 

  23. B.F. Mohamed, S.Y. Elbakry, A.A. Salah, J. Mod. Phys. 7, 9 (2006)

    Google Scholar 

  24. J. Zhu, J. Plasma Phys. 81, 905810110 (2015)

    Article  Google Scholar 

  25. S.M. Khorashadizadeh, S.T. Boroujeni, E. Rastbood, A.R. Niknam, Phys. Plasmas 19, 032109 (2012)

    Article  ADS  Google Scholar 

  26. A.R. Niknam, S.T. Boroujeni, S.M. Khorashadizadeh, Phys. Plasmas 20, 122106 (2013)

    Article  ADS  Google Scholar 

  27. G. Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  28. M. Marklund, G. Brodin, Phys. Rev. Lett. 98, 025001 (2007)

    Article  ADS  Google Scholar 

  29. G.S. Krishnaswami, R. Nityananda, A. Sen, A. Thyagaraja, Contrib. Plasma Phys. 55, 3 (2015)

    Article  ADS  Google Scholar 

  30. G. Manfredi, J. Hurst, Plasma Phys. Controlled Fusion 57, 054004 (2015)

    Article  ADS  Google Scholar 

  31. F.A. Asenjo, Phys. Lett. A 376, 2496 (2012)

    Article  ADS  Google Scholar 

  32. G. Brodin, M. Marklund, New J. Phys. 9, 277 (2007)

    Article  Google Scholar 

  33. D. Michta, F. Graziani, M. Bonitz, Contrib. Plasma Phys. 55, 437 (2015)

    Article  ADS  Google Scholar 

  34. A.P. Misra, Phys. Rev. E 83, 057401 (2011)

    Article  ADS  Google Scholar 

  35. M. Habibi, J.T. Mendonca, F. Ghamari, Phys. Plasmas 24, 012112 (2017)

    Article  ADS  Google Scholar 

  36. G.A. Hoshoudy, Indian J. Phys. 90, 477 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majedi, S., Khorashadizadeh, S.M. & Niknam, A.R. Propagation of surface waves in a spin 1/2 magnetized collisional quantum plasma half-space. Eur. Phys. J. Plus 133, 77 (2018). https://doi.org/10.1140/epjp/i2018-11911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11911-6

Navigation