Skip to main content
Log in

A new modification in the exponential rational function method for nonlinear fractional differential equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We have modified the traditional exponential rational function method (ERFM) and have used it to find the exact solutions of two different fractional partial differential equations, one is the time fractional Boussinesq equation and the other is the (2+1)-dimensional time fractional Zoomeron equation. In both the cases it is observed that the modified scheme provides more types of solutions than the traditional one. Moreover, a comparison of the recent solutions is made with some already existing solutions. We can confidently conclude that the modified scheme works better and provides more types of solutions with almost similar computational cost. Our generalized solutions include periodic, soliton-like, singular soliton and kink solutions. A graphical simulation of all types of solutions is provided and the correctness of the solution is verified by direct substitution. The extended version of the solutions is expected to provide more flexibility to scientists working in the relevant field to test their simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, in Lecture Notes in Mathematics, Vol. 2004 (Springer-Verlag, Berlin, Heidelberg, 2010)

  2. A. Yildirim, S.T. Mohyud-Din, Chin. Phys. Lett. 27, 90501 (2010)

    Article  Google Scholar 

  3. S. Tauseef Mohyud-Din, A. Yildirim, E. Yülüklü, Int. J. Numer. Methods Heat Fluid Flow 22, 928 (2012)

    Article  Google Scholar 

  4. I. Aslan, Appl. Math. Comput. 219, 2825 (2012)

    MathSciNet  Google Scholar 

  5. Z. Navickas, M. Ragulskis, N. Listopadskis, T. Telksnys, Optik 132, 223 (2017)

    Article  ADS  Google Scholar 

  6. Z. Navickas, T. Telksnys, M. Ragulskis, Comput. Math. Appl. 69, 798 (2015)

    Article  MathSciNet  Google Scholar 

  7. M. Shakeel, S.T. Mohyud-Din, Alex. Eng. J. 54, 27 (2015)

    Article  Google Scholar 

  8. O. Guner, H. Atik, A.A. Kayyrzhanovich, Optik 130, 696 (2017)

    Article  ADS  Google Scholar 

  9. M. Ekici, Optik 130, 1312 (2017)

    Article  ADS  Google Scholar 

  10. M. Inc, I.E. Inan, Y. Ugurlu, Optik 136, 374 (2017)

    Article  ADS  Google Scholar 

  11. W. Djoudi, A. Zerarka, Optik 127, 9621 (2016)

    Article  ADS  Google Scholar 

  12. S. Sahoo, S. Saha Ray, Comput. Math. Appl. 70, 158 (2015)

    Article  MathSciNet  Google Scholar 

  13. S. Guo, L. Mei, Y. Li, Y. Sun, Phys. Lett. A 376, 407 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Zhang, H.Q. Zhang, Phys. Lett. A 375, 1069 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Kaplan, A. Akbulut, A. Bekir, Commun. Theor. Phys. 65, 563 (2016)

    Article  ADS  Google Scholar 

  16. H.-Z. Liu, T. Zhang, Optik 131, 273 (2017)

    Article  ADS  Google Scholar 

  17. J. Manafian, M. Lakestani, Optik 127, 9603 (2016)

    Article  ADS  Google Scholar 

  18. M. Kaplan, A. Bekir, Optik 132, 1 (2017)

    Article  ADS  Google Scholar 

  19. M. Kaplan, A. Bekir, Optik 127, 8209 (2016)

    Article  ADS  Google Scholar 

  20. Y. Gurefe, E. Misirli, A. Sonmezoglu, M. Ekici, Appl. Math. Comput. 219, 5253 (2013)

    MathSciNet  Google Scholar 

  21. M. Ekici, M. Mirzazadeh, A. Sonmezoglu, M.Z. Ullah, Q. Zhou, H. Triki, S.P. Moshokoa, A. Biswas, Optik 136, 368 (2017)

    Article  ADS  Google Scholar 

  22. H. Demiray, Appl. Math. Comput. 154, 665 (2004)

    MathSciNet  Google Scholar 

  23. E. Aksoy, M. Kaplan, A. Bekir, Waves Random Complex Media 26, 142 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Bekir, M. Kaplan, Chin. J. Phys. 54, 365 (2016)

    Article  Google Scholar 

  25. S.T. Mohyud-Din, S. Bibi, Opt. Quantum Electron. 49, 64 (2017)

    Article  Google Scholar 

  26. E. Tala-Tebue, Z.I. Djoufack, D.C. Tsobgni-Fozap, A. Kenfack-Jiotsa, F. Kapche-Tagne, T.C. Kofané, Chin. J. Phys. 55, 939 (2017)

    Article  Google Scholar 

  27. E. Aksoy, M. Kaplan, A. Bekir, Waves Random Complex Media 26, 142 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. O. Guner, Chin. Phys. B 24, 100201 (2015)

    Article  Google Scholar 

  29. H. Jafari, H. Tajadodi, D. Baleanu, A. Al-Zahrani, Roman. Rep. 65, 1119 (2013)

    Google Scholar 

  30. O. Guner, A. Bekir, Chin. Phys. B 25, 30203 (2016)

    Article  Google Scholar 

  31. E. Yusufoğlu, A. Bekir, Appl. Math. Comput. 186, 256 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Bibi, S., Khan, U. et al. A new modification in the exponential rational function method for nonlinear fractional differential equations. Eur. Phys. J. Plus 133, 45 (2018). https://doi.org/10.1140/epjp/i2018-11896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11896-0

Navigation