Skip to main content
Log in

Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper primarily focused on the question of how population diffusion can affect the formation of the spatial patterns in the spatial fraction predator-prey system by Turing mechanisms. Our numerical findings assert that modeling by fractional reaction-diffusion equations should be considered as an appropriate tool for studying the fundamental mechanisms of complex spatiotemporal dynamics. We observe that pure Hopf instability gives rise to the formation of spiral patterns in 2D and pure Turing instability destroys the spiral pattern and results to the formation of chaotic or spatiotemporal spatial patterns. Existence and permanence of the species is also guaranteed with the 3D simulations at some instances of time for subdiffusive and superdiffusive scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Turing, Philos. Trans. R. Soc. B 237, 37 (1952)

    Article  ADS  Google Scholar 

  2. Q.X. Liu, Z. Jin, J. Stat. Mech.: Theor. Exp. 2007, P05002 (2007)

    Article  Google Scholar 

  3. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, Berlin, 2003)

  4. W. Wang Q.X. Liu, Z. Jin, Phys. Rev. E 75, 051913 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.S. Holling, Can. Entomol. 91, 293 (1959)

    Article  Google Scholar 

  6. C.S. Holling, Can. Entomol. 91, 385 (1959)

    Article  Google Scholar 

  7. M. Denny, Bull. Ecol. Soc. Am. 95, 200 (2014)

    Article  Google Scholar 

  8. B. Yang, Discret. Dyn. Nat. Soc. 2013, 454209 (2013)

    Google Scholar 

  9. J.R. Beddington, J. Anim. Ecol. 44, 331 (1975)

    Article  Google Scholar 

  10. D.T. Dimitrov, H.V. Kojouharov, Appl. Math. Comput. 162, 523 (2005)

    MathSciNet  Google Scholar 

  11. L. Xue, Physica A 391, 5987 (2012)

    Article  ADS  Google Scholar 

  12. M. Hassell, C. Varley, Nature 223, 1133 (1969)

    Article  ADS  Google Scholar 

  13. P. Crowley, E. Martin, J. North Am. Benthol. Soc. 8, 211 (1989)

    Article  Google Scholar 

  14. X. Shi, X. Zhou, X. Song, J. Appl. Math. Comput. 36, 459 (2011)

    Article  MathSciNet  Google Scholar 

  15. M.R. Garvie, Bull. Math. Biol. 69, 931 (2007)

    Article  MathSciNet  Google Scholar 

  16. R. Tian, Ecol. Model. 193, 363 (2006)

    Article  Google Scholar 

  17. I. Pearce, M. Chaplain, P. Schofield, A. Anderson, S. Hubbard, J. Theor. Biol. 241, 876 (2006)

    Article  Google Scholar 

  18. K. Uriu, Y. Iwasa, Bull. Math. Biol. 69, 2515 (2007)

    Article  MathSciNet  Google Scholar 

  19. V. Ivlev, Experimental Ecology of the Feeding Fishes (Yale University Press, New Haven, 1961)

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Netherlands, 2006)

  21. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

  22. A. Atangana, J. Comput. Phys. 293, 104 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  24. A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 8 (2016)

    Article  Google Scholar 

  25. A. Atangana, R.T. Alqahtani, Adv. Differ. Equ. 2016, 156 (2016)

    Article  Google Scholar 

  26. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  27. A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. K.M. Owolabi, Chaos, Solitons Fractals 93, 89 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. K.M. Owolabi, A. Atangana, J. Comput. Nonlinear Dyn. 12, 031010 (2016)

    Article  Google Scholar 

  30. K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Bueno-Orovio, D. Kay, K. Burrage, BIT Numer. Math. 54, 937 (2014)

    Article  Google Scholar 

  32. M.M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, 80 (2006)

    Article  MathSciNet  Google Scholar 

  33. H.K. Pang, H.W. Sun, J. Comput. Phys. 231, 693 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comput. 191, 12 (2007)

    MathSciNet  Google Scholar 

  35. Q. Liu, F. Liu, Y. Gu, P. Zhuang, J. Chen, I. Turner, Appl. Math. Comput. 256, 930 (2015)

    MathSciNet  Google Scholar 

  36. K.M. Owolabi, K.C. Patidar, Appl. Math. Comput. 240, 30 (2014)

    MathSciNet  Google Scholar 

  37. K.M. Owolabi, K.C. Patidar, Int. J. Nonlinear Sci. Numer. Simul. 15, 437 (2014)

    Article  MathSciNet  Google Scholar 

  38. K.M. Owolabi, Int. J. Nonlinear Sci. Numer. Simul. 16, 271 (2015)

    MathSciNet  Google Scholar 

  39. M.D. Ortigueira, Int. J. Math. Math. Sci. 2006, 48391 (2006)

    Article  Google Scholar 

  40. M.D. Ortigueira, J.J. Trujillo, Commun. Nonlinear Sci. Numer. Simul. 17, 5151 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  41. Q. Yang, I. Turner, F. Liu, M. Ilic, SIAM J. Sci. Comput. 33, 1159 (2011)

    Article  MathSciNet  Google Scholar 

  42. H. Wang, K. Wang, T. Sircar, J. Comput. Phys. 229, 8095 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  43. H. Wang, N. Du, J. Comput. Phys. 240, 49 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. G.W. Griffiths, W.E. Schiesser, Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with MATLAB and Maple (Academic Press, New York, 2012)

  45. C. Lubich, SIAM J. Math. Anal. 17, 704 (1986)

    Article  MathSciNet  Google Scholar 

  46. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform (Wiley, Chichester, 2001)

  47. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993)

  48. S. Samko, Stud. Math. 113, 199 (1995)

    Article  Google Scholar 

  49. A.A. Kilbas, Yu.F. Luchko, H. Martnezc, J.J. Trujillod, Integr. Transf. Spec. Funct. 21, 779 (2010)

    Article  Google Scholar 

  50. A.H. Bhrawy, M.A. Zaky, R.A. Van Gorder, Numer. Algorithms 71, 151 (2016)

    Article  MathSciNet  Google Scholar 

  51. A.H. Bhrawy, M.A. Abdelkawy, J. Comput. Phys. 294, 462 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. A.H. Bhrawy, Numer. Algorithms 73, 91 (2016)

    Article  MathSciNet  Google Scholar 

  53. K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 131, 335 (2016)

    Article  Google Scholar 

  54. K. Maleknejad, S. Sohrabi, Y. Rostami, Appl. Math. Comput. 188, 123 (2007)

    MathSciNet  Google Scholar 

  55. S.M. Cox, P.C. Matthews, J. Comput. Phys. 176, 430 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  56. J.D. Murray, Mathematical Biology I: An Introduction (Springer, New York, 2002)

  57. K.M. Owolabi, J. Numer. Math. 25, 1 (2016) DOI 0.1515/jnma-2015-0094

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, K.M., Atangana, A. Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios. Eur. Phys. J. Plus 133, 43 (2018). https://doi.org/10.1140/epjp/i2018-11886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11886-2

Navigation