Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas

Regular Article
  • 9 Downloads

Abstract.

We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.

References

  1. 1.
    Shimin Guo, Liquan Mei, Anbang Sun, Ann. Phys. 332, 38 (2013)ADSGoogle Scholar
  2. 2.
    Sailendra Nath Paul, Asesh Roychowdhury, Chaos, Solitons Fractals 91, 406 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chuan-Qi Su, Yong-Yan Wang, Xue-Qing Liu, Nan Qin, Commun. Nonlinear Sci. Numer. Simul. 48, 236 (2017)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.K. Chawla, M.K. Mishra, R.S. Tiwari, Astrophys. Space Sci. 347, 283 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, 2007)Google Scholar
  6. 6.
    A.K. Sarma, M. Saha, J. Opt. Soc. Am. B 28, 944 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Potasek, Opt. Lett. 12, 921 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    P.K. Shukla, J.J. Rasmussen, Opt. Lett. 11, 171 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    A.K. Sarma, EPL 92, 24004 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Xiang, X. Dai, S. Wen, D. Fan, J. Opt. Soc. Am. B 28, 908 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Sarma, P. Kumar, Appl. Phys. B 106, 289 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    A.P. Misra, C. Bhowmik, P.K. Shukla, Phys. Plasmas 16, 072116 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    R. Ahmad, N. Gul, M. Adnan, M. Tribeche, F.Y. Khattak, Phys. Plasmas 24, 042108 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    R. Sabry, M.A. Omran, Astrophys. Space Sci. 344, 455 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    T.S. Gill, H. Kaur, S. Bansal, N.S. Saini, P. Bala, Eur. Phys. J. D 41, 151 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Wang, Z. Zhou, X. Jiang, X. Ni, J. Shen, P. Qian, Phys. Plasmas 16, 033706 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    K. Javidan, H.R. Pakzad, Astrophys. Space Sci. 350, 557 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    I. Kourakis, M. Kerr, A. Ur-Rahman, J. Plasma Phys. 79, 1089 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    B. Ghosh, S. Banerjee, J. Plasma Phys.  https://doi.org/10.1017/S0022377814001305 (2015)
  20. 20.
    H. Alinejad, M. Mahdavi, M. Shahmansouri, J. Plasma Phys. 82, 905820104 (2016)CrossRefGoogle Scholar
  21. 21.
    Nusrat Jehan, M. Salahuddin, Arshad M. Mirza, Phys. Plasma 16, 062305 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H.R. Pakzad, K. Javidan, A. Rafiei, Astrophys. Space Sci. 353, 543 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    J.K. Chawla, M.K. Mishra, R.S. Tiwari, Astrophys. Space Sci. 347, 283 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    S. Sultana, S. Islam, A.A. Mamun, Astrophys. Space Sci. 351, 581 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    A.H. Khater, O.H. El-Kalaawy, D.K. Callebaut, Phys. Scr. 58, 545 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    W. Malfiet, Am. J. Phys. 60, 650 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    O.H. EL-Kalaawy, R.B. Aldenari, Phys. Plasmas 21, 092308 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    A.M. Wazwaz, Comput. Math. Appl. 49, 1101 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A.M. Wazwaz, Phys. Lett. A 366, 85 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    B. Tian, Y.T. Gao, H.W. Zhu, Phys. Lett. A 366, 223 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    O.H. EL-Kalaawy, Phys. Plasmas 24, 032308 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    N.H. Ibragimov, J. Math. Anal. Appl. 333, 311 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    J.H. He, Chaos, Solitons Fractals 19, 847 (2004)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    R.A. Abdullahi, Ben Muatjetjeja, Appl. Math. Lett. 48, 109 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    O.H. EL-Kalaawy, Comput. Math. Appl. 72, 1031 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    O.H. EL-Kalaawy, S.M. Moawad, Shrouk Wael, Results Phys. 7, 934 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations