Excitation functions of 3He-particle-induced nuclear reactions on 103Rh: Experimental and theoretical investigations

  • B. M. Ali
  • M. Al-Abyad
  • S. Kandil
  • A. H. M. Solieman
  • F. Ditrói
Regular Article
  • 29 Downloads

Abstract.

The excitation function for 3He-induced reactions on 103Rh, as another pathway for the production of medically used 103Pd, was studied by the stacked foil technique. Excitation functions of the 103Rh(3He,x)103Pd, 103, 104, 104m, 105Ag and 100, 101, 101m, 102, 102mRh reactions were determined up to 27 MeV by detecting the characteristic \(\gamma\)-rays obtained from the decay of residual nuclei. The experimental results were compared with the theoretical ones obtained from the EMPIRE-3.2 code and the TENDL nuclear data library. From the measured cross-section data, integral production yields were calculated.

References

  1. 1.
    J.P. Blaser, F. Boehm, P. Marmier, P. Scherrer, Helv. Phys. Acta 24, 441 (1951)Google Scholar
  2. 2.
    R.D. Albert, Phys. Rev. 115, 925 (1959)ADSCrossRefGoogle Scholar
  3. 3.
    C.H. Johnson, A. Galonsky, C.N. Inskeep, Cross sections for $(\ab{p},\ab{n})$ reactions in intermediate-weight nuclei, Progress Report, Oak Ridge National Laboratory, ORNL-2910 (1960) p. 25Google Scholar
  4. 4.
    P.V. Harper, K. Lathrop, J.L. Need, Nucl. Sci. Abstr. 15, 2780, 21516 (1961)Google Scholar
  5. 5.
    L.F. Hansen, R.D. Albert, Phys. Rev. 128, 291 (1962)ADSCrossRefGoogle Scholar
  6. 6.
    S. Mukhammedov, A. Vasidov, Izv. Akad. Nauk Uzb. SSR Ser. Fiz. Mat. 2, 329 (1984) (in Russian)Google Scholar
  7. 7.
    S. Sudár, F. Cserpák, S.M. Qaim, Appl. Radiat. Isot. 56, 821 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Hermanne, M. Sonck, A. Fenyvesi, L. Daraban, Nucl. Instrum. Methods B 170, 281 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    A. Hermanne, M. Sonck, S. Takács, F. Tárkányi, F.Y. Shubin, Nucl. Instrum. Methods B 187, 3 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    F. Ditrói, F. Tárkányi, S. Takács, A. Hermanne, H. Yamazaki, M. Baba, A. Mohammadi, A.V. Ignatyuk, Nucl. Instrum. Methods Phys. Res. B 269, 1963 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Ozafran, M.E. Vazquez, M. De La Vega Vedoya, S.J. Nassiff, Radiochem. Radioanal. Lett. 43, 265 (1980)Google Scholar
  12. 12.
    G.W.A. Newton, V.J. Robinson, E.M. Shaw, J. Inorg. Nucl. Chem. 43, 2227 (1981)CrossRefGoogle Scholar
  13. 13.
    M.S. Gadkari, N.L. Singh, Pramana J. Phys. 62, 1059 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    A. Hermanne, S. Takács, F. Tárkányi, R. Bolbos, Radiochim. Acta 92, 215 (2004)Google Scholar
  15. 15.
    A. Hermanne, F. Tárkányi, S. Takács, Yu.N. Shubin, Nucl. Instrum. Methods Phys. Res. B 229, 321 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Uddin, M. Hagiwara, M. Baba, F. Tarkanyi, F. Ditroi, Appl. Radiat. Isot. 62, 533 (2005)CrossRefGoogle Scholar
  17. 17.
    S.M. Qaim, E. Betak, Noy R. Capote, B.V. Carlson, A.D. Caldeira, H.D. Choi, A.V. Ignatyuk, B. Kiraly, E. Menapace, F.M. Nortier, R. Paviotti De Corcuera, B. Scholten, Yu.N. Shubin, J.C. Sublet, S. Takacs, F.T. Tarkanyi, Production of Therapeutic Radionuclides, Technical Report IAEA, http://www-nds.iaea.org/radionuclides/index.html (2009)
  18. 18.
    Pooneh Saidi, Mahdi Sadeghi, Milad Enferadi, Gholamreza Aslani, Ann. Nucl. Energy 38, 2168 (2011)CrossRefGoogle Scholar
  19. 19.
    B.M. Ali, M. Al-Abyad, U. Seddik, S.U. El-Kamessy, F. Ditrói, S. Takács, F. Tárkányi, Nucl. Instrum. Methods Phys. Res. B 321, 30 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    M. Al-Abyad, F. Tárkányi, F. Ditrói, S. Takács, App. Radiat. Isot. 94, 191 (2014)CrossRefGoogle Scholar
  21. 21.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM 2013 code, available on-line at http://srim.org
  22. 22.
    G. Székely, Comput. Phys. Commun. 34, 313 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    Donald H. Perkins, Introduction to High Energy Physics (Cambridge University Press, 1999)Google Scholar
  24. 24.
    National Nuclear Data Center, Brookhaven National Laboratory, http://www.nndc.bnl.gov/hbin/nudat (NuDat 2.6 database)
  25. 25.
    F. Tárkányi, S. Takács, K. Gul, A. Hermanne, M.G. Mustafa, M. Nortier, P. Oblozinsky, S.M. Qaim, B. Scholten, Yu.N. Shubin, Z. Youxiang, Beam monitors reactions: Charged particles cross-sections database for medical radioisotope production (IAEA, 2001) pp. 77--80, IAEA TECDOC-1211, available on-line at http://www-nds.iaea.org/medical (updated version, January 2007)
  26. 26.
    F. Szelecsényi, Z. Kovács, K. Nagatsu, M.-R. Zhang, K. Suzuki, Appl. Radiat. Isot. 119, 94 (2017)CrossRefGoogle Scholar
  27. 27.
    ISO, Guide to Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, 1995)Google Scholar
  28. 28.
    A.J. Koning, S. Hilaire, M. Duijvestijn, TALYS-1.2: A nuclear reaction program - User manual (2009)Google Scholar
  29. 29.
    T. Belgya, O. Bersillon, R. Capote, T. Fukahori, G. Zhigang, S. Goriely, M. Herman, A.V. Ignatyuk, S. Kailas, A. Koning, P. Obložinský, V. Plujko, P. Young, Handbook for calculations of nuclear reaction data, RIPL-2 (IAEA, 2006) IAEATECDOC-1506, available on-line at http://www-nds.iaea.org/RIPL-2/
  30. 30.
    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    J. Raynal, ECIS code (NEA DATA Bank, Paris, France, 2005)Google Scholar
  32. 32.
    A.J. Koning, S. Hilaire, M. Duijvestijn, AIP Conf. Proc. 769, 1154 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    A.J. Koning, M.C. Duijvestijn, Nucl. Phys. A 744, 15 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    M. Herman, R. Capote, B.V. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108, 2655 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    R. Capote, M. Herman, P. Obložinský, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, G. Zhigang, Yinlu. Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    M. Herman, EMPIRE-3.2 (Malta): modular system for nuclear reaction calculations and nuclear data evaluation: User’s Manual (2013)Google Scholar
  37. 37.
    A.J. Koning, D. Rochman, J. Kopecky, J.Ch. Sublet, E. Bauge, S. Hilaire, P. Romain, B. Morillon, H. Duarte, S. van der Marck, S. Pomp, H. Sjostrand, R. Forrest, H. Henriksson, O. Cabellos, S. Goriely, J. Leppanen, H. Leeb, A. Plompen, R. Mills, TALYS-Based Evaluated Nuclear Data Library, available on-line at https://tendl.web.psi.ch/tendl_2015/tendl2015.html
  38. 38.
    Ye. Skakuna, S.M. Qaim, Appl. Radiat. Isot. 66, 653 (2008)CrossRefGoogle Scholar
  39. 39.
    M. Hussain, S. Sudar, M.N. Aslam, H.A. Shah, R. Ahmad, A.A. Malik, S.M. Qaim, Appl. Radiat. Isot. 67, 1842 (2009)CrossRefGoogle Scholar
  40. 40.
    M.U. Khandaker, K. Kim, G. Kim, Nucl. Instrum. Methods Phys. Res. B 274, 148 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Z.B. Alfassi, R. Weinreich, Radiochim. Acta 30, 67 (1982)Google Scholar
  42. 42.
    M. Fassbender, A.F. Novgorodov, F. Rösch, S.M. Qaim, Radiochim. Acta 65, 215 (1994)Google Scholar
  43. 43.
    F. Tárkányi, M. Nortier, R. Capote, A.V. Ignatyuk, B. Scholten, S.F. Kovalev, B. Király, E. Menapace, Yu.N. Shubin, Charged-particle production of ^64,67Cu, ^67Ga, ^86gY, ^102Rh, ^103Pd, ^111g,114mIn, ^124,125I, ^169gYb, ^177gLu, ^186gRe, ^192gIr, ^210,211At and ^225Ac, in Nuclear Data for the Production of Therapeutic Radionuclides, edited by E. Betak, IAEA, Technical Reports Series, Vol. 473 (IAEA, 2011) p. 143Google Scholar
  44. 44.
    F. Tárkányi, A. Hermanne, B. Király, S. Takács, F. Ditrói, J. Csikai, A. Fenyvesi, M.S. Uddin, M. Hagiwara, M. Baba, T. Ido, Y.N. Shubin, A.V. Ignatyuk, Appl. Radiat. Isot. 67, 1574 (2009)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. M. Ali
    • 1
  • M. Al-Abyad
    • 1
  • S. Kandil
    • 1
  • A. H. M. Solieman
    • 1
  • F. Ditrói
    • 2
  1. 1.Physics department (Cyclotron Facility), Nuclear Research CentreAtomic Energy AuthorityCairoEgypt
  2. 2.Institute for Nuclear Research (ATOMKI)Hungarian Academy of SciencesDebrecenHungary

Personalised recommendations