Skip to main content
Log in

Controlling nonlinear optical response in an open four-level molecular system using quantum control of spin-orbit interaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Brumer, M. Shapiro, Principles of the Quantum Control of Molecular Processes (John Wiley & Sons, New York, 2003)

  2. J. González-Vázquez, I.R. Sola, J. Santamaria, V.S. Malinovsky, Chem. Phys. Lett. 431, 231 (2006)

    Article  ADS  Google Scholar 

  3. C.M. Marian, Spin-orbit Coupling and Intersystem Crossing in Molecules, Vol. 2 (John Wiley & Sons, Ltd., 2011) https://doi.org/10.1002/WCMS.83

  4. M. Bixon, J. Jortner, J. Chem. Phys. 48, 715 (1968)

    Article  ADS  Google Scholar 

  5. H. Sun, J. Huennekens, J. Chem. Phys. 97, 4714 (1992)

    Article  ADS  Google Scholar 

  6. J. González-Vázquez, I.R. Sola, J. Santamaria, V.S. Malinovsky, J. Chem. Phys. 125, 124315 (2006)

    Article  ADS  Google Scholar 

  7. E.H. Ahmed, S. Ingram, T. Kirova, O. Salihoglu, J. Huennekens, J. Qi, Y. Guan, A.M. Lyyra, Phys. Rev. Lett. 107, 163601 (2011)

    Article  ADS  Google Scholar 

  8. T. Kirova, F.C. Spano, Phys. Rev. A 71, 063816 (2005)

    Article  ADS  Google Scholar 

  9. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  10. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  11. M. Fleischhauer, M.D. Lukin, Phys. Rev. A 65, 022314 (2002)

    Article  ADS  Google Scholar 

  12. S.E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  13. X. Yang, S. Li, C. Zhang, H. Wang, J. Opt. Soc. Am. B 26, 1423 (2009)

    Article  ADS  Google Scholar 

  14. Z. Wang, A.-X. Chen, Y. Bai, W.-X. Yang, R.K. Lee, J. Opt. Soc. Am. B 29, 2891 (2012)

    Article  ADS  Google Scholar 

  15. L.G. Si, W.X. Yang, X.Y. Lü, X. Hao, X. Yang, Phys. Rev. A 82, 013836 (2010)

    Article  ADS  Google Scholar 

  16. M.D. Lukin, S.F. Yelin, M. Fleischhauer, Phys. Rev. Lett. 84, 4232 (2000)

    Article  ADS  Google Scholar 

  17. D. Han, H. Guo, Y. Bai, H. Sun, Phys. Lett. A 334, 243 (2005)

    Article  ADS  Google Scholar 

  18. X.M. Hu, G.L. Cheng, J.H. Zou, X. Li, D. Du, Phys. Rev. A 72, 023803 (2005)

    Article  ADS  Google Scholar 

  19. J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, second ed. (Pearson, 2011)

  20. P.R. Berman, V.S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University Press, 2010)

  21. S. Stenholm, Foundations of Laser Spectroscopy (Wiley Interscience, New York, 1984)

  22. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997)

  23. R.W. Boyd, Nonlinear Optics, third ed. (Academic Press, 2008)

  24. S.H. Autler, C.H. Townes, Phys. Rev. 100, 703 (1955)

    Article  ADS  Google Scholar 

  25. H.S. Moon, L. Lee, K. Kim, J.B. Kim, Appl. Phys. Lett. 84, 3001 (2004)

    Article  ADS  Google Scholar 

  26. D. Budker, M.V. Romalis, Nat. Phys. 3, 227 (2007)

    Article  Google Scholar 

  27. H.S. Moon, T. Jeong, Phys. Rev. A 89, 033822 (2014)

    Article  ADS  Google Scholar 

  28. M.E. Orczyk, J. Swiatkiewicz, G. Huang, P.N. Prasad, J. Phys. Chem. 98, 7307 (1994)

    Article  Google Scholar 

  29. R. del Coso, J. Solis, J. Opt. Soc. Am. B 21, 640 (2004)

    Article  ADS  Google Scholar 

  30. S.M. Kirkpatrick, R.R. Naik, M.O. Stone, J. Phys. Chem. B 105, 2867 (2001)

    Article  Google Scholar 

  31. H. Schmidt, A. Imamoglu, Opt. Lett. 21, 1936 (1996)

    Article  ADS  Google Scholar 

  32. X. Yan, L. Wang, B. Yin, J. Song, Optik 122, 986 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Jamshidi-Ghaleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi-Ghaleh, K., Ebrahimi-hamed, Z. & Sahrai, M. Controlling nonlinear optical response in an open four-level molecular system using quantum control of spin-orbit interaction. Eur. Phys. J. Plus 132, 424 (2017). https://doi.org/10.1140/epjp/i2017-11687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11687-1

Navigation