Controlling nonlinear optical response in an open four-level molecular system using quantum control of spin-orbit interaction

  • Kazem Jamshidi-Ghaleh
  • Zahra Ebrahimi-hamed
  • Mostafa Sahrai
Regular Article


This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.


  1. 1.
    P.W. Brumer, M. Shapiro, Principles of the Quantum Control of Molecular Processes (John Wiley & Sons, New York, 2003)Google Scholar
  2. 2.
    J. González-Vázquez, I.R. Sola, J. Santamaria, V.S. Malinovsky, Chem. Phys. Lett. 431, 231 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    C.M. Marian, Spin-orbit Coupling and Intersystem Crossing in Molecules, Vol. 2 (John Wiley & Sons, Ltd., 2011)
  4. 4.
    M. Bixon, J. Jortner, J. Chem. Phys. 48, 715 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    H. Sun, J. Huennekens, J. Chem. Phys. 97, 4714 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    J. González-Vázquez, I.R. Sola, J. Santamaria, V.S. Malinovsky, J. Chem. Phys. 125, 124315 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    E.H. Ahmed, S. Ingram, T. Kirova, O. Salihoglu, J. Huennekens, J. Qi, Y. Guan, A.M. Lyyra, Phys. Rev. Lett. 107, 163601 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Kirova, F.C. Spano, Phys. Rev. A 71, 063816 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S.E. Harris, Phys. Today 50, 36 (1997)CrossRefGoogle Scholar
  10. 10.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    M. Fleischhauer, M.D. Lukin, Phys. Rev. A 65, 022314 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    S.E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    X. Yang, S. Li, C. Zhang, H. Wang, J. Opt. Soc. Am. B 26, 1423 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Wang, A.-X. Chen, Y. Bai, W.-X. Yang, R.K. Lee, J. Opt. Soc. Am. B 29, 2891 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    L.G. Si, W.X. Yang, X.Y. Lü, X. Hao, X. Yang, Phys. Rev. A 82, 013836 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M.D. Lukin, S.F. Yelin, M. Fleischhauer, Phys. Rev. Lett. 84, 4232 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    D. Han, H. Guo, Y. Bai, H. Sun, Phys. Lett. A 334, 243 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    X.M. Hu, G.L. Cheng, J.H. Zou, X. Li, D. Du, Phys. Rev. A 72, 023803 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, second ed. (Pearson, 2011)Google Scholar
  20. 20.
    P.R. Berman, V.S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University Press, 2010)Google Scholar
  21. 21.
    S. Stenholm, Foundations of Laser Spectroscopy (Wiley Interscience, New York, 1984)Google Scholar
  22. 22.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997)Google Scholar
  23. 23.
    R.W. Boyd, Nonlinear Optics, third ed. (Academic Press, 2008)Google Scholar
  24. 24.
    S.H. Autler, C.H. Townes, Phys. Rev. 100, 703 (1955)ADSCrossRefGoogle Scholar
  25. 25.
    H.S. Moon, L. Lee, K. Kim, J.B. Kim, Appl. Phys. Lett. 84, 3001 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    D. Budker, M.V. Romalis, Nat. Phys. 3, 227 (2007)CrossRefGoogle Scholar
  27. 27.
    H.S. Moon, T. Jeong, Phys. Rev. A 89, 033822 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M.E. Orczyk, J. Swiatkiewicz, G. Huang, P.N. Prasad, J. Phys. Chem. 98, 7307 (1994)CrossRefGoogle Scholar
  29. 29.
    R. del Coso, J. Solis, J. Opt. Soc. Am. B 21, 640 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Kirkpatrick, R.R. Naik, M.O. Stone, J. Phys. Chem. B 105, 2867 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Schmidt, A. Imamoglu, Opt. Lett. 21, 1936 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    X. Yan, L. Wang, B. Yin, J. Song, Optik 122, 986 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Research Institute for Applied PhysicsUniversity of TabrizTabrizIran

Personalised recommendations