Advertisement

Study of charged particle production in U-U collisions in the wounded quark model

  • O. S. K. Chaturvedi
  • P. K. Srivastava
  • Ashwini Kumar
  • B. K. Singh
Regular Article

Abstract.

Recently, there has been a growing interest in the study of deformed uranium-uranium (U-U) collisions in its various geometrical configurations due to their usefulness in understanding the different aspects of quantum chromodynamics (QCD). In this paper we have studied the particle production in deformed U-U collisions at \( \sqrt{s_{NN}} = 193\) GeV using the modified wounded quark model (WQM). At first, we have shown the variation of quark-nucleus inelastic scattering cross-section ( \( \sigma_{qA}^{in}\) with respect to centralities for various geometrical orientations of U-U collisions in WQM. After that we have calculated the pseudorapidity density ( \( {\rm d}n_{ch}/{\rm d} \eta\) within WQM using a two-component prescription. Further we have calculated the transverse energy density distribution ( \( {\rm d}E_{T}/{\rm d} \eta\) along with the ratio of transverse energy to charged hadron multiplicity ( \( E_{T}/N_{ch}\) for U-U collisions and compared them with the corresponding experimental data. We have shown the scaling behavior of \( {\rm d}n_{ch}/{\rm d} \eta\) and \( {\rm d}E_{T}/{\rm d} \eta\) for different initial geometry of U-U collision with respect to p -p data at \( \sqrt{s_{NN}}= 200\) GeV. Furthermore we have shown the Bjorken energy density achieved in U-U collisions for various configurations and compared them with experimental data of Au-Au at 200GeV. We observe that the present model suitably describes the experimental data for minimum bias geometrical configuration of U-U collisions. An estimate for various observables in different initial geometries of U-U collisions is also presented which will be tested in future by experimental data.

References

  1. 1.
    C.P. Singh, Int. J. Mod. Phys. A 7, 7185 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    C.P. Singh, Phys. Rep. 236, 147 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    P.K. Srivastava, S.K. Tiwari, C.P. Singh, Phys. Rev. D 82, 014023 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Hirono, M. Hongo, T. Hirano, Phys. Rev. C 72, 021903(R) (2014)ADSCrossRefGoogle Scholar
  6. 6.
    U. Heinz, A. Kuhlman, Phys. Rev. Lett. 94, 132301 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    A. Kuhlman, U. Heinz, Phys. Rev. C 72, 037901 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Bondorf, H.T. Feldmeier, S. Garpman, E.C. Halbert, Phys. Lett. B 65, 3 (1976)CrossRefGoogle Scholar
  9. 9.
    H. Masui, B. Mohanty, Nu Xu, Phys. Lett. B 679, 440 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Q.Y. Shou, Y.G. Ma, P. Sorensen, A.H. Tang, F. Videbk, H. Wang, Phys. Lett. B 749, 215 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Voloshin, Phys. Rev. Lett. 105, 172301 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Bloczynski, Xu-G. Huang, X. Zhang, J. Liao, arXiv:nucl-th/1311.5451Google Scholar
  13. 13.
    B. Schenke, P. Tribedy, R. Venugopalan, arXiv:nucl-th/1403.2232Google Scholar
  14. 14.
    Z.G. Xiao, X. Dong, F. Liu, X.F. Luo, K.J. Wu, H.S. Xu, N. Xu, W.L. Zhan, J. Phys. G Nucl. Part. Phys. 34, S915 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    E.V. Shuryak, arXiv:nucl-th/9906062Google Scholar
  16. 16.
    D. Kikoa, G. Odyniec, R. Vogt, Phys. Rev. C 84, 054907 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Lett. B 459, 667 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    B.-A. Li, Phys. Rev. C 61, 021903(R) (2000)ADSCrossRefGoogle Scholar
  20. 20.
    P.F. Kolb, J. Sollfrank, P.V. Ruuskanen, U. Heinz, Nucl. Phys. A 661, 349c (1999)ADSCrossRefGoogle Scholar
  21. 21.
    STAR Collaboration (H. Wang, P. Sorensen), arXiv:nucl-ex/1406:7522Google Scholar
  22. 22.
    W. Ke-Jun, X. Fei, Z. You, L. Feng, X. Nu, Chin. Phys. Lett. 25, 3204 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    T. Hirano, P. Huovinen, Y. Nara, Phys. Rev. C 83, 021902(R) (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M.R. Haque, Z.-W. Lin, B. Mohanty, Phys. Rev. C 85, 034905 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J. Xu, Z. Martinot, B.-A. Li, Phys. Rev. C 86, 044623 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M. Rybczynski, W. Broniowski, G. Stefanek, Phys. Rev. C 87, 044908 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 89, 064908 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    S. Chatterjee, P. Tribedy, Phys. Rev. C 92, 011902(R) (2015)ADSCrossRefGoogle Scholar
  29. 29.
    A. Goldschmidt, Z. Qiu, C. Shen, U. Heinz, Phys. Rev. C 92, 044903 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    P. Bozek, W. Broniowski, M. Rybczynski, Phys. Rev. C 94, 014902 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    A. Drees, arXiv:physics.acc-ph/1312.6618Google Scholar
  32. 32.
    J. Hoelck, F. Nendzig, G. Wolschin, arXiv:hep-ph/1602.00019Google Scholar
  33. 33.
    H. Heiselberg, A.-M. Levy, Phys. Rev. C 59, 5 (1999)CrossRefGoogle Scholar
  34. 34.
    C. Nepali, G. Fai, D. Keane, Phys. Rev. C 76, 051902(R) (2007)ADSCrossRefGoogle Scholar
  35. 35.
    P. Filip, R. Lednicky, H. Masui, N. Xu, Phys. Rev. C 80, 054903 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    K. Hagino, N.W. Lwin, M. Yamagami, Phys. Rev. C 74, 017310 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kumar, P.K. Srivastava, B.K. Singh, C.P. Singh, Adv. High Energy Phys. 2013, 352180 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Kumar, B.K. Singh, P.K. Srivastava, C.P. Singh, Eur. Phys. J. Plus 128, 45 (2013)CrossRefGoogle Scholar
  40. 40.
    O.S.K. Chaturvedi, P.K. Srivastava, A. Kumar, B.K. Singh, Eur. Phys. J. Plus 131, 438 (2016)CrossRefGoogle Scholar
  41. 41.
    C.P. Singh, M. Shyam, S.K. Tuli, Phys. Rev. C 40, 1716 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    M. Shyam, C.P. Singh, S.K. Tuli, Phys. Lett. B 164, 189 (1985)ADSCrossRefGoogle Scholar
  43. 43.
    C.P. Singh, M. Shyam, Phys. Lett. B 171, 125 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    A. Bialas, W. Czyz, L. Lesniak, Phys. Rev. D 25, 9 (1992)Google Scholar
  45. 45.
    V.V. Anisovich, M.N. Kobrinskii, J. Nyiri, Yu.M. Shabelskii, Sov. Phys. Usp. 27, 12 (1984)CrossRefGoogle Scholar
  46. 46.
    H.J. Lipkin, Phys. Lett. B 116, 175 (1982)ADSCrossRefGoogle Scholar
  47. 47.
    ALICE Collaboration (J. Adam), arXiv:nucl-ex/1509.07541Google Scholar
  48. 48.
    S. Nussinov, Phys. Rev. Lett. 34, 1286 (1975)ADSCrossRefGoogle Scholar
  49. 49.
    F.E. Low, Phys. Rev. D 12, 163 (1980)ADSCrossRefGoogle Scholar
  50. 50.
    T. Alexopoulos et al., Phys. Lett. B 435, 453 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    W.D. Walker, Phys. Rev. D 69, 034007 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    C. Loizides, J. Nagle, P. Steinberg, arXiv:nucl-ex/1408.2549Google Scholar
  53. 53.
    S. Fernbach, R. Serber, T.B. Taylor, Phys. Rev. 75, 1352 (1949)ADSCrossRefGoogle Scholar
  54. 54.
    T.F. Hoang, B. Cork, H.J. Crawford, Z. Phys. C 29, 611 (1985)ADSCrossRefGoogle Scholar
  55. 55.
    Thomas A. Trainer, Phys. Rev. C 80, 044901 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Thomas A. Trainor, David T. Kettler, Phys. Rev. C 83, 034903 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 115, 222301 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    S. Chatterjee, S.K. Singh, S. Ghosh, Md Hasanujjaman, J. Alam, S. Sarkar, Phys. Lett. B 758, 269 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C 92, 011901 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  61. 61.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    S.K. Tiwari, R. Sahoo, arXiv:hep-ph/1701.03323Google Scholar
  63. 63.
    S.K. Tiwari, P.K. Srivastava, C.P. Singh, Phys. Rev. C 85, 014908 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    Arpit Singh, P.K. Srivastava, O.S.K. Chaturvedi, S. Ahmad, B.K. Singh, arXiv:nucl-th/1707.07552Google Scholar
  65. 65.
    R. Nouicer et al., J. Phys. G 30, S1133 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 80, 011901(R) (2009)CrossRefGoogle Scholar
  67. 67.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 74, 021901(R) (2006)CrossRefGoogle Scholar
  68. 68.
    V. Bairathi, Md.R. Haque, B. Mohanty, Phys. Rev. C 91, 054903 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of PhysicsIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations