Tunable thermal conductivity along graphene/hexagonal boron-nitride polycrystalline heterostructures

  • Ali Vahedi
  • Mohammad Homayoune Sadr Lahidjani
Regular Article


Atomic layers of graphene and hexagonal boron-nitride (h-BN) are two-dimensional materials with very similar atomic structures. Recent experimental advances guarantee the possibility of making graphene/h-BN heterostructures, using the chemical vapour deposition technique which aims to build more advanced materials with tuneable electronic, mechanical and thermal properties. In this study, we investigate the in-plane thermal conductivity of the graphene/h-BN heterostructures by using the atomistic-continuum multi-scale method. In this regard at the first step, we carried out molecular dynamic simulation of polycrystalline films with nano-sized grains in atomic scale. Next, based on the results provided from the atomic scale, we developed a finite-element model for a larger-grained material to evaluate the effective thermal conductivity of macroscopic samples. Current study results reveal the feasibility of tuning of thermal conductivity and heat transfer on graphene/h-BN heterostructures by controlling the grain size and percentage of h-BN atoms in the structures. In addition, the effects of grain boundaries on the thermal conductivity at various scales are also addressed. Our findings in this study provide good vision regarding the thermal conductivity of the graphene/h-BN heterostructure.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 06, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov et al., Proc. Natl. Acad. Sci. 102, 10451 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau et al., Nat. Mater. 9, 555 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei et al., Nat. Nanotech. 8, 119 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark, W. Deng et al., Science 343, 163 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    M.P. Levendorf, C.J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park, Nature 448, 627 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J.E. Barrios-Vargas, B. Mortazavi, A.W. Cummings, R. Martinez-Gordillo, M. Pruneda, L. Colombo, T. Rabczuk, S. Roche, Nano Lett. 17, 1660 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic et al., Nano Lett. 9, 30 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    R.Y. Tay, M.H. Griep, G. Mallick, S.H. Tsang, R.S. Singh, T. Tumlin et al., Nano Lett. 14, 839 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    K. Kim, Z. Lee, W. Regan, C. Kisielowski, M.F. Crommie, A. Zettl, ACS Nano 5, 2142 (2011)CrossRefGoogle Scholar
  15. 15.
    P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney et al., Nature 469, 389 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J. An, E. Voelkl, J.W. Suk, X. Li, C.W. Magnuson et al., ACS Nano 5, 2433 (2011)CrossRefGoogle Scholar
  17. 17.
    O.V. Yazyev, Y.P. Chen, Nat. Nanotechnol. 9, 755 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    P. Yasaei, A. Fathizadeh, R. Hantehzadeh, A.K. Majee, A. El-Ghandour et al., Nano Lett. 15, 4532 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    W. Lee, K.D. Kihm, H. Kim, S. Shin, C. Lee, J.S. Park, S. Cheon et al., Nano Lett. 17, 2361 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    T.B. Limbu, K.R. Hahn, F. Mendoza, S. Sahoo, J.J. Razink, R.S. Katiyar, B.R. Weiner, G. Morell, Carbon 117, 367 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Mortazavi, R. Quey, A. Ostadhossein, A. Villani, N. Moulin, A.C.T. van Duin, T. Rabczuk, Appl. Mater. Today 7, 67 (2017)CrossRefGoogle Scholar
  22. 22.
    B. Mortazavi, M. Pötschke, G. Cuniberti, Nanoscale 6, 3344 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    B. Mortazavi, L.F.C. Pereira, J.W. Jiang, T. Rabczuk, Sci. Rep. 5, 13228 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J. Kotakoski, J.C. Meyer, Phys. Rev. B 85, 195447 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    L. Lindsay, D.A. Broido, Phys. Rev. B 82, 205441 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    L. Lindsay, D.A. Broido, Phys. Rev. B 84, 155421 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    L.F.C. Pereira, D. Donadio, Phys. Rev. B 87, 125424 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    X. Xu, J. Chen, B. Li, J. Phys.: Condens. Matter 28, 483001 (2016)Google Scholar
  33. 33.
    B. Mortazavi, O. Rahaman, T. Rabczuk, L.F.C. Pereira, Carbon 106, 1 (2016)CrossRefGoogle Scholar
  34. 34.
    R. D’Souza, S. Mukherje, Phys. Rev. B 95, 085435 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    K. Mohammadi, M. Mahinzare, A. Rajabpour, M. Ghadiri, Eur. Phys. J. Plus 132, 115 (2017)CrossRefGoogle Scholar
  36. 36.
    H. Ghasemi, A. Rajabpour, Eur. Phys. J. Plus 132, 221 (2017)CrossRefGoogle Scholar
  37. 37.
    B. Mortazavi, T. Rabczuk, Carbon 85, 1 (2015)CrossRefGoogle Scholar
  38. 38.
    H. SafarPour, K. Mohammadi, M. Ghadiri, A. Rajabpour, Eur. Phys. J. Plus 132, 281 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ali Vahedi
    • 1
  • Mohammad Homayoune Sadr Lahidjani
    • 1
  1. 1.Department of Aerospace EngineeringAmirkabir University of Technology (Tehran polytechnic)TehranIran

Personalised recommendations