Skip to main content
Log in

Tunable thermal conductivity along graphene/hexagonal boron-nitride polycrystalline heterostructures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Atomic layers of graphene and hexagonal boron-nitride (h-BN) are two-dimensional materials with very similar atomic structures. Recent experimental advances guarantee the possibility of making graphene/h-BN heterostructures, using the chemical vapour deposition technique which aims to build more advanced materials with tuneable electronic, mechanical and thermal properties. In this study, we investigate the in-plane thermal conductivity of the graphene/h-BN heterostructures by using the atomistic-continuum multi-scale method. In this regard at the first step, we carried out molecular dynamic simulation of polycrystalline films with nano-sized grains in atomic scale. Next, based on the results provided from the atomic scale, we developed a finite-element model for a larger-grained material to evaluate the effective thermal conductivity of macroscopic samples. Current study results reveal the feasibility of tuning of thermal conductivity and heat transfer on graphene/h-BN heterostructures by controlling the grain size and percentage of h-BN atoms in the structures. In addition, the effects of grain boundaries on the thermal conductivity at various scales are also addressed. Our findings in this study provide good vision regarding the thermal conductivity of the graphene/h-BN heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 06, 666 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov et al., Proc. Natl. Acad. Sci. 102, 10451 (2005)

    Article  ADS  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  4. S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau et al., Nat. Mater. 9, 555 (2010)

    Article  ADS  Google Scholar 

  5. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  6. J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638 (2007)

    Article  ADS  Google Scholar 

  7. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)

    Article  ADS  Google Scholar 

  8. Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei et al., Nat. Nanotech. 8, 119 (2013)

    Article  ADS  Google Scholar 

  9. L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark, W. Deng et al., Science 343, 163 (2014)

    Article  ADS  Google Scholar 

  10. M.P. Levendorf, C.J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park, Nature 448, 627 (2012)

    Article  ADS  Google Scholar 

  11. J.E. Barrios-Vargas, B. Mortazavi, A.W. Cummings, R. Martinez-Gordillo, M. Pruneda, L. Colombo, T. Rabczuk, S. Roche, Nano Lett. 17, 1660 (2017)

    Article  ADS  Google Scholar 

  12. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic et al., Nano Lett. 9, 30 (2009)

    Article  ADS  Google Scholar 

  13. R.Y. Tay, M.H. Griep, G. Mallick, S.H. Tsang, R.S. Singh, T. Tumlin et al., Nano Lett. 14, 839 (2014)

    Article  ADS  Google Scholar 

  14. K. Kim, Z. Lee, W. Regan, C. Kisielowski, M.F. Crommie, A. Zettl, ACS Nano 5, 2142 (2011)

    Article  Google Scholar 

  15. P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney et al., Nature 469, 389 (2011)

    Article  ADS  Google Scholar 

  16. J. An, E. Voelkl, J.W. Suk, X. Li, C.W. Magnuson et al., ACS Nano 5, 2433 (2011)

    Article  Google Scholar 

  17. O.V. Yazyev, Y.P. Chen, Nat. Nanotechnol. 9, 755 (2014)

    Article  ADS  Google Scholar 

  18. P. Yasaei, A. Fathizadeh, R. Hantehzadeh, A.K. Majee, A. El-Ghandour et al., Nano Lett. 15, 4532 (2015)

    Article  ADS  Google Scholar 

  19. W. Lee, K.D. Kihm, H. Kim, S. Shin, C. Lee, J.S. Park, S. Cheon et al., Nano Lett. 17, 2361 (2017)

    Article  ADS  Google Scholar 

  20. T.B. Limbu, K.R. Hahn, F. Mendoza, S. Sahoo, J.J. Razink, R.S. Katiyar, B.R. Weiner, G. Morell, Carbon 117, 367 (2017)

    Article  Google Scholar 

  21. B. Mortazavi, R. Quey, A. Ostadhossein, A. Villani, N. Moulin, A.C.T. van Duin, T. Rabczuk, Appl. Mater. Today 7, 67 (2017)

    Article  Google Scholar 

  22. B. Mortazavi, M. Pötschke, G. Cuniberti, Nanoscale 6, 3344 (2014)

    Article  ADS  Google Scholar 

  23. B. Mortazavi, L.F.C. Pereira, J.W. Jiang, T. Rabczuk, Sci. Rep. 5, 13228 (2015)

    Article  ADS  Google Scholar 

  24. J. Kotakoski, J.C. Meyer, Phys. Rev. B 85, 195447 (2012)

    Article  ADS  Google Scholar 

  25. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  26. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002)

    Article  ADS  Google Scholar 

  27. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  28. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988)

    Article  ADS  Google Scholar 

  29. L. Lindsay, D.A. Broido, Phys. Rev. B 82, 205441 (2010)

    Article  ADS  Google Scholar 

  30. L. Lindsay, D.A. Broido, Phys. Rev. B 84, 155421 (2011)

    Article  ADS  Google Scholar 

  31. L.F.C. Pereira, D. Donadio, Phys. Rev. B 87, 125424 (2013)

    Article  ADS  Google Scholar 

  32. X. Xu, J. Chen, B. Li, J. Phys.: Condens. Matter 28, 483001 (2016)

    Google Scholar 

  33. B. Mortazavi, O. Rahaman, T. Rabczuk, L.F.C. Pereira, Carbon 106, 1 (2016)

    Article  Google Scholar 

  34. R. D’Souza, S. Mukherje, Phys. Rev. B 95, 085435 (2017)

    Article  ADS  Google Scholar 

  35. K. Mohammadi, M. Mahinzare, A. Rajabpour, M. Ghadiri, Eur. Phys. J. Plus 132, 115 (2017)

    Article  Google Scholar 

  36. H. Ghasemi, A. Rajabpour, Eur. Phys. J. Plus 132, 221 (2017)

    Article  Google Scholar 

  37. B. Mortazavi, T. Rabczuk, Carbon 85, 1 (2015)

    Article  Google Scholar 

  38. H. SafarPour, K. Mohammadi, M. Ghadiri, A. Rajabpour, Eur. Phys. J. Plus 132, 281 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Homayoune Sadr Lahidjani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahedi, A., Sadr Lahidjani, M.H. Tunable thermal conductivity along graphene/hexagonal boron-nitride polycrystalline heterostructures. Eur. Phys. J. Plus 132, 420 (2017). https://doi.org/10.1140/epjp/i2017-11674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11674-6

Navigation