Skip to main content
Log in

Linear analysis of an X-band backward wave oscillator with a circular-edge disk-loaded cylindrical waveguide driven by an annular electron beam

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

An X-band backward wave oscillator (BWO) with a circular-edge disk-loaded periodic metallic slow wave structure (CDSWS) is proposed and studied numerically. The structure is the modified version of our previously modeled semi-circularly corrugated slow wave structure (SCCSWS). The CDSWS is energized by an intense relativistic electron beam (IREB) which is directed by a strong magnetic field. The electromagnetic (EM) wave of the slow wave structure (SWS) merges with the space charge wave of the beam under the guidance of the strong axial magnetic field. The inner wall contour of CDSWS is modeled by a finite Fourier series and the dispersion characteristics of different TM modes are solved by utilizing the linear Rayleigh-Fourier (R-F) technique, which is verified by a commercial EM solver. To study the temporal growth rate (TGR) for the fundamental TM01 mode, the dispersion equation is solved for the beam current of 0.1-1.0kA and the beam energy of 205-665kV. For the TM01 mode, the TGR that occurs at the unstable region, which provides a qualitative index of the strength of the microwave generation, is compared with those of the BWOs with sinusoidally corrugated SWS (SCSWS), disk-loaded SWS (DLSWS) and triangularly corrugated SWS (TrCSWS) for different beam parameters. The dimension of the CDSWS is determined by comparing the dispersion characteristics of fundamental TM01 mode with DLSWS and SCSWS. For the same set of beam parameters, an average of 3.5%, 7%, 1.5% and more than 50% higher TGR have been obtained with the proposed CDSWS than that of SCSWS, DLSWS, TrCSWS and SCCSWS respectively. Moreover, the presented structure also provides an advantage in the fabrication process and is less prone to RF breakdown since it has no sharp edges in the inner wall where the electric field intensity can be infinitely high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Chipengo, M. Zuboraj, N.K. Nahar, J.L. Volakis, IEEE Trans. Plasma Sci. 43, 1879 (2015)

    Article  ADS  Google Scholar 

  2. J. Zhang, Z.-X. Jin, J.-H. Yang, H.-H. Zhong, T. Shu, J.-D. Zhang et al., IEEE Trans. Plasma Sci. 39, 1438 (2011)

    Article  ADS  Google Scholar 

  3. M. Amin, K. Ogura, Microwaves Antennas Propag. IET 1, 575 (2007)

    Article  Google Scholar 

  4. Z. Wang, Y. Gong, Y. Wei, Z. Duan, Y. Zhang, L. Yue et al., IEEE Trans. Electron. Dev. 60, 471 (2013)

    Article  ADS  Google Scholar 

  5. R.J. Barker, E. Schamiloglu, High-power microwave sources and technologies (Wiley-IEEE Press, 2001)

  6. A.V. Gunin, A.I. Klimov, S.D. Korovin, I.K. Kurkan, I.V. Pegel, S.D. Polevin et al., IEEE Trans. Plasma Sci. 26, 326 (1998)

    Article  ADS  Google Scholar 

  7. K. Ogura, A. Shirai, M. Ogata, S. Gong, K. Yambe, IEEE Trans. Plasma Sci. 44, 201 (2016)

    Article  ADS  Google Scholar 

  8. R.A. Kehs, A. Bromborsky, B. Ruth, S. Graybill, W. Destler, Y. Carmel et al., IEEE Trans. Plasma Sci. 13, 559 (1985)

    Article  ADS  Google Scholar 

  9. H. Wang, Z. Yang, L. Zhao, Z. Liang, IEEE Trans. Plasma Sci. 33, 111 (2005)

    Article  ADS  Google Scholar 

  10. H. Yamazaki, K. Ogura, T. Watanabe, J. Plasma Fusion Res. Ser. 6, 719 (2004)

    Google Scholar 

  11. J.J. Barroso, J.P.L. Neto, K.G. Kostov, IEEE Trans. Plasma Sci. 31, 752 (2003)

    Article  ADS  Google Scholar 

  12. S. Bugaev, V.A. Cherepenin, V. Kanavets, A. Klimov, A. Kopenkin, V. Koshelev et al., IEEE Trans. Plasma Sci. 18, 525 (1990)

    Article  ADS  Google Scholar 

  13. Y. Carmel, K. Minami, W. Lou, R.A. Kehs, W.W. Destler, V.L. Granatstein et al., IEEE Trans. Plasma Sci. 18, 497 (1990)

    Article  ADS  Google Scholar 

  14. J. Swegle, R. Anderson, J. Camacho, B. Poole, M. Rhodes, E. Rosenbury et al., IEEE Trans. Plasma Sci. 21, 714 (1993)

    Article  ADS  Google Scholar 

  15. V. Bratman, G. Denisov, N. Kolganov, S. Mishakin, S. Samsonov, D. Sobolev, Tech. Phys. 56, 269 (2011)

    Article  Google Scholar 

  16. E.M. Totmeninov, A.I. Klimov, I.K. Kurkan, S.D. Polevin, V.V. Rostov, A possibility of pulsed power increasing of X-band relativistic backward wave oscillator, in Proceedings of the 15th International Symposium on High Current Electronics (2008) pp. 411--414

  17. O. Kazuo, A. Shingo, K. Hiroki, Y. Kazumasa, Y. Kiyoyuki, A. Md Ruhul, J. Kor. Phys. Soc. 59, 3555 (2011)

    Article  ADS  Google Scholar 

  18. G. Stupakov, K. Bane, Phys. Rev. S. T. 15, 124401 (2012)

    ADS  Google Scholar 

  19. V. Kesari, P. Jain, B. Basu, IEEE Trans. Plasma Sci. 33, 1358 (2005)

    Article  ADS  Google Scholar 

  20. M.G. Saber, R.H. Sagor, M.R. Amin, Eur. Phys. J. Plus 131, 171 (2016)

    Article  Google Scholar 

  21. M.G. Saber, R.H. Sagor, M.R. Amin, Eur. Phys. J. D 69, 38 (2015)

    Article  ADS  Google Scholar 

  22. M.G. Saber, R.H. Sagor, M.R. Amin, Eur. Phys. J. Appl. Phys. 70, 20801 (2015)

    Article  Google Scholar 

  23. M.R. Amin, K. Ogura, J. Kojima, R.H. Sagor, IEEE Trans. Plasma Sci. 42, 1495 (2014)

    Article  Google Scholar 

  24. T. Watanabe, Y. Choyal, K. Minami, V. Granatstein, Phys. Rev. E 69, 056606 (2004)

    Article  ADS  Google Scholar 

  25. CTS - Computer Simulation Technology, https://www.cts.com

  26. M.R. Amin, K. Ogura, IEEE Trans. Plasma Sci. 41, 2257 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakibul Hasan Sagor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan Sagor, R., Ruhul Amin, M. Linear analysis of an X-band backward wave oscillator with a circular-edge disk-loaded cylindrical waveguide driven by an annular electron beam. Eur. Phys. J. Plus 132, 428 (2017). https://doi.org/10.1140/epjp/i2017-11663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11663-9

Navigation