Advertisement

Linear analysis of an X-band backward wave oscillator with a circular-edge disk-loaded cylindrical waveguide driven by an annular electron beam

  • Rakibul Hasan Sagor
  • Md. Ruhul Amin
Regular Article
  • 43 Downloads

Abstract.

An X-band backward wave oscillator (BWO) with a circular-edge disk-loaded periodic metallic slow wave structure (CDSWS) is proposed and studied numerically. The structure is the modified version of our previously modeled semi-circularly corrugated slow wave structure (SCCSWS). The CDSWS is energized by an intense relativistic electron beam (IREB) which is directed by a strong magnetic field. The electromagnetic (EM) wave of the slow wave structure (SWS) merges with the space charge wave of the beam under the guidance of the strong axial magnetic field. The inner wall contour of CDSWS is modeled by a finite Fourier series and the dispersion characteristics of different TM modes are solved by utilizing the linear Rayleigh-Fourier (R-F) technique, which is verified by a commercial EM solver. To study the temporal growth rate (TGR) for the fundamental TM01 mode, the dispersion equation is solved for the beam current of 0.1-1.0kA and the beam energy of 205-665kV. For the TM01 mode, the TGR that occurs at the unstable region, which provides a qualitative index of the strength of the microwave generation, is compared with those of the BWOs with sinusoidally corrugated SWS (SCSWS), disk-loaded SWS (DLSWS) and triangularly corrugated SWS (TrCSWS) for different beam parameters. The dimension of the CDSWS is determined by comparing the dispersion characteristics of fundamental TM01 mode with DLSWS and SCSWS. For the same set of beam parameters, an average of 3.5%, 7%, 1.5% and more than 50% higher TGR have been obtained with the proposed CDSWS than that of SCSWS, DLSWS, TrCSWS and SCCSWS respectively. Moreover, the presented structure also provides an advantage in the fabrication process and is less prone to RF breakdown since it has no sharp edges in the inner wall where the electric field intensity can be infinitely high.

References

  1. 1.
    U. Chipengo, M. Zuboraj, N.K. Nahar, J.L. Volakis, IEEE Trans. Plasma Sci. 43, 1879 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    J. Zhang, Z.-X. Jin, J.-H. Yang, H.-H. Zhong, T. Shu, J.-D. Zhang et al., IEEE Trans. Plasma Sci. 39, 1438 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M. Amin, K. Ogura, Microwaves Antennas Propag. IET 1, 575 (2007)CrossRefGoogle Scholar
  4. 4.
    Z. Wang, Y. Gong, Y. Wei, Z. Duan, Y. Zhang, L. Yue et al., IEEE Trans. Electron. Dev. 60, 471 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    R.J. Barker, E. Schamiloglu, High-power microwave sources and technologies (Wiley-IEEE Press, 2001)Google Scholar
  6. 6.
    A.V. Gunin, A.I. Klimov, S.D. Korovin, I.K. Kurkan, I.V. Pegel, S.D. Polevin et al., IEEE Trans. Plasma Sci. 26, 326 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    K. Ogura, A. Shirai, M. Ogata, S. Gong, K. Yambe, IEEE Trans. Plasma Sci. 44, 201 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    R.A. Kehs, A. Bromborsky, B. Ruth, S. Graybill, W. Destler, Y. Carmel et al., IEEE Trans. Plasma Sci. 13, 559 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    H. Wang, Z. Yang, L. Zhao, Z. Liang, IEEE Trans. Plasma Sci. 33, 111 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    H. Yamazaki, K. Ogura, T. Watanabe, J. Plasma Fusion Res. Ser. 6, 719 (2004)Google Scholar
  11. 11.
    J.J. Barroso, J.P.L. Neto, K.G. Kostov, IEEE Trans. Plasma Sci. 31, 752 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bugaev, V.A. Cherepenin, V. Kanavets, A. Klimov, A. Kopenkin, V. Koshelev et al., IEEE Trans. Plasma Sci. 18, 525 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Carmel, K. Minami, W. Lou, R.A. Kehs, W.W. Destler, V.L. Granatstein et al., IEEE Trans. Plasma Sci. 18, 497 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    J. Swegle, R. Anderson, J. Camacho, B. Poole, M. Rhodes, E. Rosenbury et al., IEEE Trans. Plasma Sci. 21, 714 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    V. Bratman, G. Denisov, N. Kolganov, S. Mishakin, S. Samsonov, D. Sobolev, Tech. Phys. 56, 269 (2011)CrossRefGoogle Scholar
  16. 16.
    E.M. Totmeninov, A.I. Klimov, I.K. Kurkan, S.D. Polevin, V.V. Rostov, A possibility of pulsed power increasing of X-band relativistic backward wave oscillator, in Proceedings of the 15th International Symposium on High Current Electronics (2008) pp. 411--414Google Scholar
  17. 17.
    O. Kazuo, A. Shingo, K. Hiroki, Y. Kazumasa, Y. Kiyoyuki, A. Md Ruhul, J. Kor. Phys. Soc. 59, 3555 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    G. Stupakov, K. Bane, Phys. Rev. S. T. 15, 124401 (2012)ADSGoogle Scholar
  19. 19.
    V. Kesari, P. Jain, B. Basu, IEEE Trans. Plasma Sci. 33, 1358 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M.G. Saber, R.H. Sagor, M.R. Amin, Eur. Phys. J. Plus 131, 171 (2016)CrossRefGoogle Scholar
  21. 21.
    M.G. Saber, R.H. Sagor, M.R. Amin, Eur. Phys. J. D 69, 38 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M.G. Saber, R.H. Sagor, M.R. Amin, Eur. Phys. J. Appl. Phys. 70, 20801 (2015)CrossRefGoogle Scholar
  23. 23.
    M.R. Amin, K. Ogura, J. Kojima, R.H. Sagor, IEEE Trans. Plasma Sci. 42, 1495 (2014)CrossRefGoogle Scholar
  24. 24.
    T. Watanabe, Y. Choyal, K. Minami, V. Granatstein, Phys. Rev. E 69, 056606 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    CTS - Computer Simulation Technology, https://www.cts.com
  26. 26.
    M.R. Amin, K. Ogura, IEEE Trans. Plasma Sci. 41, 2257 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringIslamic University of Technology (IUT), Board BazarGazipurBangladesh

Personalised recommendations