Thermodynamic performance optimization for an irreversible vacuum thermionic generator

  • Lingen Chen
  • Zemin Ding
  • Junle Zhou
  • Wenhua Wang
  • Fengrui Sun
Regular Article

Abstract.

Theoretical model of an irreversible vacuum thermionic generator considering external and internal finite rate heat transfer is established in this paper. By assuming radiative heat transfer processes, the general expressions of performance parameters are derived based on non-equilibrium thermodynamics and finite-time thermodynamics (FTT). The thermodynamic performances of the irreversible thermionic device are further analyzed and optimized by using the FTT theory with multiple optimization criteria such as power output, efficiency, ecological function, and efficient power. The influences of design parameters, such as output voltage, collector work function and heat reservoir temperature, on optimal performance are analyzed in detail by numerical calculations. By properly choosing the work function and output voltage, the thermionic generator can be tuned to operate in the optimal condition with maximum power or efficiency. By comparing the device performance at different design points, the optimal operation regions of power and efficiency of the irreversible thermionic generator are determined. The obtained results are of theoretical significance for the optimal design of practical solar-powered thermionic generators.

References

  1. 1.
    G.N. Hatsopoulos, J. Kaye, J. Appl. Phys. 29, 1124 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    V.C. Wilson, J. Appl. Phys. 30, 475 (1959)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Houston, J. Appl. Phys. 30, 481 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    N.S. Rasor, J. Appl. Phys. 31, 163 (1960)ADSCrossRefGoogle Scholar
  5. 5.
    D. Gabor, Nature 189, 868 (1961)ADSCrossRefGoogle Scholar
  6. 6.
    J.H. Ingold, J. Appl. Phys. 32, 769 (1961)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Cayless, Br. J. Appl. Phys. 12, 433 (1961)ADSCrossRefGoogle Scholar
  8. 8.
    G.N. Hatsopoulos, E.P. Gyftopoulos, Thermionic Energy Conversion, Vol. 1: Processes and Devices (MIT Press, Cambridge, 1973)Google Scholar
  9. 9.
    L.B. Robinson, K. Shimada, J. Appl. Phys. 47, 107 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    F.G. Baksht, G.A. Dyvzhev, A.M. Martsinovskiy, B.Y. Moyzhes, G.Y. Dikus, E.B. Sonin, V.G. Yur’yev, Thermionic Converters and Low-Temperature Plasma, edited by L.K. Hansen (Technical Information Center, US DoE, Springfield, VA, 1978) English editionGoogle Scholar
  11. 11.
    Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, T.W. Kenny, Appl. Phys. Lett. 78, 2572 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hishinuma, B.Y. Moyzhes, T.H. Geballe, T.W. Kenny, Appl. Phys. Lett. 81, 4242 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, T.W. Kenny, J. Appl. Phys. 94, 4690 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    H.T. Chua, X. Wang, J.M. Gordon, Appl. Phys. Lett. 84, 3999 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    T. Zeng, Appl. Phys. Lett. 88, 153104 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J.I. Lee, Y.H. Jeong, H.C. No, R. Hannebauer, S.K. Yoo, Appl. Phys. Lett. 95, 223107 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M.F. O’Dwyer, T.E. Humphrey, R.A. Lewis, C. Zhang, J. Phys. D: Appl. Phys. 42, 035417 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    D.S. Chauhan, S.K. Srivastava, Non-Conventional Energy Resources (New Age International, New Delhi, India, 2007)Google Scholar
  19. 19.
    B. Andresen, Finite-Time Thermodynamics, in Physics Laboratory II (University of Copenhagen, 1983)Google Scholar
  20. 20.
    B. Andresen, R.S. Berry, M.J. Ondrechen, P. Salamon, Acc. Chem. Res. 17, 266 (1984)CrossRefGoogle Scholar
  21. 21.
    A. de Vos, Endoreversible Thermodynamics of Solar Energy Conversion (Oxford University, Oxford, 1992)Google Scholar
  22. 22.
    A. Bejan, J. Appl. Phys. 79, 1191 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes (Wiley, Chichester, 1999)Google Scholar
  24. 24.
    L.G. Chen, C. Wu, F.R. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)ADSGoogle Scholar
  25. 25.
    C. Wu, L.G. Chen, J.C. Chen, Recent Advances in Finite Time Thermodynamics (Nova Science Publishers, New York, 1999)Google Scholar
  26. 26.
    S. Sieniutycz, Phys. Rep. 326, 165 (2000)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Sieniutycz, A. de Vos, Thermodynamics of Energy Conversion and Transport (Springer-Verlag, New York, 2000)Google Scholar
  28. 28.
    K.H. Hoffman, J. Burzler, A. Fischer, M. Schaller, S. Schubert, J. Non-Equilib. Thermodyn. 28, 233 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    L.G. Chen, F.R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (Nova Science Publishers, New York, 2004)Google Scholar
  30. 30.
    S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems (Elsevier, Oxford, UK, 2009)Google Scholar
  31. 31.
    L.G. Chen, Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (Higher Education Press, Beijing, 2005)Google Scholar
  32. 32.
    A. de Vos, Thermodynamics of Solar Energy Conversion (Wiley-VCH Verlag, 2008)Google Scholar
  33. 33.
    B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)CrossRefGoogle Scholar
  34. 34.
    S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems and Fuel Cells (Elsevier, Oxford, UK, 2013)Google Scholar
  35. 35.
    F.K. Meng, L.G. Chen, F.R. Sun, B. Yang, Energy 66, 965 (2014)CrossRefGoogle Scholar
  36. 36.
    B. Yang, L.G. Chen, Y.L. Ge, F.R. Sun, Int. J. Exergy 14, 459 (2014)CrossRefGoogle Scholar
  37. 37.
    B. Xiong, L.G. Chen, F.K. Meng, F.R. Sun, Energy 77, 562 (2014)CrossRefGoogle Scholar
  38. 38.
    K.H. Hoffmann, B. Andresen, P. Salamon, Finite-time thermodynamics tools to analyze dissipative processes, in Proceedings of the 240 Conference: Science’s Great Challences, in Adv. Chem. Phys., Vol. 157, edited by A.R. Dinner (Wiley, 2015) pp. 57--67Google Scholar
  39. 39.
    Z.M. Ding, L.G. Chen, F.R. Sun, J. Energy Inst. 88, 169 (2015)CrossRefGoogle Scholar
  40. 40.
    Z.M. Ding, L.G. Chen, F.R. Sun, J. Energy Inst. 88, 36 (2015)CrossRefGoogle Scholar
  41. 41.
    X.Y. Qin, L.G. Chen, Y.L. Ge, F.R. Sun, Physica A 436, 788 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    Z.M. Ding, L.G. Chen, W.H. Wang, Y.L. Ge, F.R. Sun, Physica A 431, 94 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    X.H. Wu, L.G. Chen, F.R. Sun, Appl. Math. Model. 39, 1689 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    L.G. Chen, X.H. Wu, Q.H. Xiao, Y.L. Ge, F.R. Sun, Environ. Eng. Manag. J. 14, 2341 (2015)Google Scholar
  45. 45.
    Z.M. Ding, L.G. Chen, Y.L. Ge, F.R. Sun, Environ. Eng. Manag. J. 14, 97 (2015)Google Scholar
  46. 46.
    L.G. Chen, B. Yang, X. Shen, Z.H. Xie, F.R. Sun, Appl. Thermal Eng. 86, 151 (2015)CrossRefGoogle Scholar
  47. 47.
    E. Açikkalp, N. Caner, Eur. Phys. J. Plus 130, 73 (2015)CrossRefGoogle Scholar
  48. 48.
    E. Açikkalp, N. Caner, Eur. Phys. J. Plus 130, 93 (2015)CrossRefGoogle Scholar
  49. 49.
    M.H. Ahmadi, M.A. Ahmadi, F. Pourfayaz, Eur. Phys. J. Plus 130, 190 (2015)CrossRefGoogle Scholar
  50. 50.
    J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Eur. Phys. J. Plus 131, 149 (2016)CrossRefGoogle Scholar
  51. 51.
    H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Eur. Phys. J. Plus 131, 274 (2016)CrossRefGoogle Scholar
  52. 52.
    E. Açikkalp, Eur. Phys. J. Plus 131, 426 (2016)CrossRefGoogle Scholar
  53. 53.
    L. Zhang, L.G. Chen, F.R. Sun, Physica A 445, 221 (2016)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Z.M. Ding, L.G. Chen, Y.L. Ge, F.R. Sun, Physica A 447, 49 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    B. Yang, L.G. Chen, F.R. Sun, J. Energy Inst. 89, 1 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    C. Wang, L.G. Chen, S.J. Xia, F.R. Sun, Energy 99, 152 (2016)CrossRefGoogle Scholar
  57. 57.
    Y.H. Yu, Z.M. Ding, L.G. Chen, W.H. Wang, F.R. Sun, Energy 107, 287 (2016)CrossRefGoogle Scholar
  58. 58.
    J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Energy 111, 306 (2016)CrossRefGoogle Scholar
  59. 59.
    C. Wang, L.G. Chen, S.J. Xia, F.R. Sun, J. Non-Equilib. Thermodyn. 41, 313 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    Y.L. Ge, L.G. Chen, F.R. Sun, Entropy 18, 139 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    L.G. Chen, H.J. Feng, Z.H. Xie, Entropy 18, 353 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    L.G. Chen, S.J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes (Science Press, Beijing, 2016)Google Scholar
  63. 63.
    L.G. Chen, S.J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles (Science Press, Beijing, 2016)Google Scholar
  64. 64.
    S. Sieniutycz, Thermodynamic Approaches in Engineering Systems (Elsevier, Oxford, 2016)Google Scholar
  65. 65.
    L.G. Chen, F.K. Meng, F.R. Sun, Sci. China: Tech. Sci. 59, 442 (2016)CrossRefGoogle Scholar
  66. 66.
    S.J. Xia, L.G. Chen, Z.H. Xie, F.R. Sun, Sci. China: Tech. Sci. 59, 1507 (2016)CrossRefGoogle Scholar
  67. 67.
    S.J. Xia, L.G. Chen, F.R. Sun, Sci. China: Tech. Sci. 59, 1867 (2016)CrossRefGoogle Scholar
  68. 68.
    Y. Yin, L.G. Chen, F. Wu, Eur. Phys. J. Plus 132, 45 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    Y.H. Bi, L.G. Chen, Finite Time Thermodynamic Optimization for Air Heat Pumps (Science Press, Beijing, 2017) (in Chinese)Google Scholar
  70. 70.
    H.J. Feng, L.G. Chen, X. Liu, Z.H. Xie, Int. J. Heat Mass Transfer 111, 1192 (2017)CrossRefGoogle Scholar
  71. 71.
    S.J. Xia, L.G. Chen, Eur. Phys. J. Plus 132, 201 (2017)CrossRefGoogle Scholar
  72. 72.
    Z.X. Wu, L.G. Chen, Y.L. Ge, F.R. Sun, Eur. Phys. J. Plus 132, 203 (2017)CrossRefGoogle Scholar
  73. 73.
    Y.L. Ge, L.G. Chen, X.Y. Qin, Z.H. Xie, Eur. Phys. J. Plus 132, 209 (2017)CrossRefGoogle Scholar
  74. 74.
    S.J. Xia, L.G. Chen, Eur. Phys. J. Plus 132, 235 (2017)CrossRefGoogle Scholar
  75. 75.
    Y. Pan, B. Lin, J. Quanzhou Normal University (Natural Science) 26, 41 (2008) (in Chinese)Google Scholar
  76. 76.
    L.G. Chen, Z.M. Ding, F.R. Sun, J. Appl. Phys. 107, 104507 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Z.M. Ding, L.G. Chen, F.R. Sun, Heat Transfer Eng. 33, 693 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    Z.M. Ding, L.G. Chen, F.R. Sun, J. Thermal Sci. Technol. 14, 134 (2015) (in Chinese)Google Scholar
  79. 79.
    C. Wu, Energy Convers. Manag. 33, 279 (1992)CrossRefGoogle Scholar
  80. 80.
    L.B. Erbay, H. Yavuz, Design parameters of a thermionic energy converter, in Proceedings of the International Conference on Thermodynamics Analysis and Improvement of Energy Systems (TAIES’97), Beijing, 1997 (Beijing World Publishing Corporation, 1997)Google Scholar
  81. 81.
    S. Bhattacharyya, Design of a thermodynamically power optimized irreversible thermionic generator, in Recent Advances in Finite-Time Thermodynamics, edited by C. Wu, L.G. Chen, J.C. Chen (Nova Science Publishers, New York, 1999) pp. 105--113Google Scholar
  82. 82.
    Y. Wang, S. Su, B. Lin, J. Chen, J. Appl. Phys. 114, 053502 (2013)ADSCrossRefGoogle Scholar
  83. 83.
    X.C. Xuan, D. Li, J. Power Sources 115, 167 (2003)ADSCrossRefGoogle Scholar
  84. 84.
    T.J. Liao, Z.M. Yang, B.H. Lin, Sci. Sin. Phys. Mech. Astron. 44, 125 (2014) (in Chinese)CrossRefGoogle Scholar
  85. 85.
    Z.M. Ding, L.G. Chen, Y.L. Ge, F.R. Sun, Environ. Eng. Manag. J. 14, 97 (2015)Google Scholar
  86. 86.
    Y. Wang, S. Su, T. Liu, G. Su, J. Chen, Energy 90, 1575 (2015)CrossRefGoogle Scholar
  87. 87.
    X.C. Xuan, J. Appl. Phys. 92, 4746 (2002)ADSCrossRefGoogle Scholar
  88. 88.
    Z.M. Ding, L.G. Chen, F.R. Sun, J. Energy Inst. 88, 169 (2015)CrossRefGoogle Scholar
  89. 89.
    Z.M. Yang, T.J. Liao, B.H. Lin, Sci. Sin. Technol. 44, 1173 (2014) (in Chinese)Google Scholar
  90. 90.
    S. Su, H. Zhang, X. Chen, J. Kang, J. Chen, Energy 93, 900 (2015)CrossRefGoogle Scholar
  91. 91.
    J.W. Schwede, I. Bargatin, D.C. Riley, B.E. Hardin, Nat. Mater. 9, 762 (2010)ADSCrossRefGoogle Scholar
  92. 92.
    S. Su, H. Zhang, X. Chen, J. Kang, J. Chen, Sol. Energy Mater. Sol. Cells 117, 219 (2013)CrossRefGoogle Scholar
  93. 93.
    J. Lin, Z.M. Yang, B.H. Lin, Z.F. Huang, Sci. Sin. Technol. 46, 225 (2016) (in Chinese)Google Scholar
  94. 94.
    Y. Wang, T. Liao, Y. Zhang, X. Chen, S. Su, J. Chen, J. Appl. Phys. 119, 045106 (2016)ADSCrossRefGoogle Scholar
  95. 95.
    F. Angulo-Brown, J. Appl. Phys. 69, 7465 (1991)ADSCrossRefGoogle Scholar
  96. 96.
    Z. Yan, J. Appl. Phys. 73, 3583 (1993)ADSCrossRefGoogle Scholar
  97. 97.
    L.G. Chen, F.R. Sun, W.Z. Chen, J. Eng. Therm. Energy Power 9, 374 (1994) (in Chinese)Google Scholar
  98. 98.
    N. Sanchez-Salas, A. Calvo Hernandez, Phys. Rev. E 70, 046134 (2004)ADSCrossRefGoogle Scholar
  99. 99.
    T.H. Chen, J. Phys. D: Appl. Phys. 39, 1442 (2006)ADSCrossRefGoogle Scholar
  100. 100.
    Y. Ust, Appl. Therm. Eng. 29, 47 (2009)CrossRefGoogle Scholar
  101. 101.
    X.W. Liu, L.G. Chen, F. Wu, F.R. Sun, Sci. China Ser. G: Phys. Mech. Astron. 52, 1976 (2009)ADSCrossRefGoogle Scholar
  102. 102.
    X.W. Liu, L.G. Chen, F. Wu, F.R. Sun, Phys. Scr. 81, 025003 (2010)ADSCrossRefGoogle Scholar
  103. 103.
    Z.M. Ding, L.G. Chen, F.R. Sun, Appl. Math. Model. 35, 276 (2011)MathSciNetCrossRefGoogle Scholar
  104. 104.
    J. Li, L.G. Chen, F.R. Sun, Int. J. Sustain. Energy 30, 55 (2011)CrossRefGoogle Scholar
  105. 105.
    P.A. Ngouateu Wouagfack, R. Tchinda, Int. J. Therm. Sci. 54, 209 (2012)CrossRefGoogle Scholar
  106. 106.
    H. Wang, G. Wu, J. Appl. Phys. 113, 054309 (2013)ADSCrossRefGoogle Scholar
  107. 107.
    M.M. Naserian, S. Farahat, F. Sarhaddi, Energy Convers. Manag. 103, 790 (2015)CrossRefGoogle Scholar
  108. 108.
    R. Long, W. Liu, Physica A 443, 14 (2016)ADSCrossRefGoogle Scholar
  109. 109.
    T. Yilmaz, J. Energy Inst. 79, 38 (2006)CrossRefGoogle Scholar
  110. 110.
    T. Yilmaz, Proc. IMechE Part A: J. Power Energy 221, 603 (2007)CrossRefGoogle Scholar
  111. 111.
    R. Kumar, S.C. Kaushik, R. Kumar, Int. J. Eng. Res. Technol. 6, 643 (2013)Google Scholar
  112. 112.
    R. Arora, S.C. Kaushik, R. Kumar, J. Thermal Eng. 1, 345 (2015)CrossRefGoogle Scholar
  113. 113.
    Y.C. Gerstenmaier, G. Wachutka, AIP Conf. Proc. 890, 349 (2007)ADSCrossRefGoogle Scholar
  114. 114.
    F.P. Incropera, D.P. De Witt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1985)Google Scholar
  115. 115.
    W.S. Janna, Engineering Heat Transfer (CRC Press, Boca Raton, 2000)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lingen Chen
    • 1
    • 2
    • 3
  • Zemin Ding
    • 1
    • 2
    • 3
  • Junle Zhou
    • 1
    • 2
    • 3
  • Wenhua Wang
    • 1
    • 2
    • 3
  • Fengrui Sun
    • 1
    • 2
    • 3
  1. 1.Institute of Thermal Science and Power EngineeringNaval University of EngineeringWuhanChina
  2. 2.Military Key Laboratory for Naval Ship Power EngineeringNaval University of EngineeringWuhanChina
  3. 3.College of Power EngineeringNaval University of EngineeringWuhanChina

Personalised recommendations