Induced gravity from two occurrences of actions

Regular Article
  • 29 Downloads

Abstract.

Modified gravity theories have gained recently an increasing interest in cosmology since they offer some solutions to a number of cosmological puzzles. All these theories are formulated by means of one occurrence of action that group geometry and fields in one single package. In this communication, we introduce a simple modified gravity based on the occurrence of two independent actions. We show that their combination divulge some properties that bear a resemblance to induced gravity and offer new insights in astrophysics and cosmology.

References

  1. 1.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (J. Wiley & Sons, 1972)Google Scholar
  2. 2.
    I.H. Stairs, Living Rev. Relativ. 6, 5 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations 2 edition (Cambridge University Press, 2003)Google Scholar
  4. 4.
    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Rovelli, Quantum Gravity, in Cambridge Monographs on Mathematical Physics (Cambridge, 2004)Google Scholar
  6. 6.
    P.S. Wesson, Space-Time-Matter, Modern Kaluza-Klein Theory (Singapore, World Scientific, 1999)Google Scholar
  7. 7.
    M. Duff, Int. J. Mod. Phys. A 11, 6523 (1996)Google Scholar
  8. 8.
    H.F.M. Goenner, Living Rev. Relativ. 7, 2 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic, Dordrecht, The Netherlands, 2004)Google Scholar
  10. 10.
    S.F. Hassan, R.A. Rosen, JHEP 02, 126 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Y.-F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79, 106901 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Capozziello, M. De Laurentis, V. Faraoni, Open Astron. J. 3, 49 (2010)ADSGoogle Scholar
  15. 15.
    A. De Felice, M. Hinmarsh, M. Trodden, J. Cosm. Astropart. Phys. 08, 005 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    D. Comelli, M. Crisostomi, K. Koyama, L. Pilo, G. Tasinato, Phys. Rev. D 91, 121502 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    D. Ferst, Pricing Asian Options by Importance Sampling, Diplomarbeit, ausgefuhrt am Institut für Wirtschaftsmathematik der Technischen Universitat Wien, Wien (2012)Google Scholar
  18. 18.
    R.A. El-Nabulsi, Acta Math. Viet 40, 689 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Dacorogna, Introduction to the Calculus of Variations (Imperial College Press, London, 2004)Google Scholar
  20. 20.
    J.H.R. Lewis, Phys. Rev. Lett. 18, 510 (1967)ADSCrossRefGoogle Scholar
  21. 21.
    G. Dattoli, S. Solimeno, A. Torres, Phys. Rev. A 34, 2646 (1986)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    I. Oda, Induced gravity from curvature density preserving diffeomorphisms, arXiv:1602.00851
  23. 23.
    C. Gao, Int. J. Mod. Phys. Conf. Ser. 10, 95 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    S. Ho, C.M. Hirata, N. Padmanabhan, U. Seljak, N. Bahcall, Phys. Rev. D 78, 043519 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    S.W. Hawking, Commun. Math. Phys. 43, 1999 (1975)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Athens Institute for Education and ResearchMathematics and Physics DivisionsAthensGreece

Personalised recommendations