Advertisement

Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

  • Noreen Sher Akbar
  • Dharmendra Tripathi
  • O. Anwar Bég
Regular Article

Abstract.

This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

References

  1. 1.
    S. Berger, L.-D. Jou, Annu. Rev. Fluid Mech. 32, 347 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    J. Misra, M. Patra, S. Misra, J. Biomech. 26, 1129 (1993)CrossRefGoogle Scholar
  3. 3.
    R. Ellahi et al., Appl. Math. Inf. Sci. 8, 1567 (2014)CrossRefGoogle Scholar
  4. 4.
    N.S. Akbar et al., Int. J. Therm. Sci. 85, 54 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Iqbal, N.S. Akbar et al., Eur. Phys. J. Plus 132, 147 (2017)CrossRefGoogle Scholar
  6. 6.
    K.S. Mekheimer, M.H. Haroun, M. El Kot, Can. J. Phys. 89, 201 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    R. Ellahi, S. Ur-Rahman, S. Nadeem, Z. Naturforsch. A 68, 489 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    S. Chakravarty, A.K. Sannigrahi, Int. J. Eng. Sci. 36, 1083 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Nadeem, S. Ijaz, Phys. Lett. A 379, 542 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Back et al., J. Biomech. 19, 1 (1986)CrossRefGoogle Scholar
  11. 11.
    U.S. Chakraborty, D. Biswas, M. Paul, Korea-Australia. Rheol. J. 23, 25 (2011)CrossRefGoogle Scholar
  12. 12.
    A.A. Owida, H. Do, Y.S. Morsi, Comput. Methods Progr. Biomed. 108, 689 (2012)CrossRefGoogle Scholar
  13. 13.
    G. Schneiderman, L.F. Mockros, T.K. Goldstick, J. Biomech. 15, 849 (1982)CrossRefGoogle Scholar
  14. 14.
    K.S. Mekheimer, M. El Kot, Eng. Sci. Technol. Int. J. 18, 452 (2015)CrossRefGoogle Scholar
  15. 15.
    N. Sher Akbar, Z. Khan, Int. J. Biomath. 8, 1550026 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Mollica, R.K. Jain, P.A. Netti, Microvasc. Res. 65, 56 (2003)CrossRefGoogle Scholar
  17. 17.
    V.K. Joshi et al., Eur. Phys. J. Plus 132, 254 (2017)CrossRefGoogle Scholar
  18. 18.
    R. Manimaran, World Acad. Sci. Eng. Technol. 73, 804 (2011)Google Scholar
  19. 19.
    M.G. Rabby, S.P. Shupti, M.M. Molla, J. Fluids 2014 (2014)Google Scholar
  20. 20.
    N.S. Akbar, A.B. Huda, D. Tripathi, Eur. Phys. J. Plus 131, 332 (2016)CrossRefGoogle Scholar
  21. 21.
    M.M. Molla, M. Paul, Med. Eng. Phys. 34, 1079 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Zaman et al., Int. J. Heat Mass Transfer 95, 1084 (2016)CrossRefGoogle Scholar
  23. 23.
    P. Neofytou, D. Drikakis, Int. J. Numer. Methods Fluids 43, 597 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    D. Tripathi, A. Yadav, O. Anwar Bég, Eur. Phys. J. Plus 132, 173 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Tan, A. Thomas, Y. Liu, Soft Matter 8, 1934 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    D.E. Owens, N.A. Peppas, Int. J. Pharm. 307, 93 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Lundqvist et al., Proc. Natl. Acad. Sci. U.S.A. 105, 14265 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    H. Otsuka, Y. Nagasaki, K. Kataoka, Adv. Drug Deliv. Rev. 55, 403 (2003)CrossRefGoogle Scholar
  29. 29.
    K.N. Sugahara et al., Cancer Cell 16, 510 (2009)CrossRefGoogle Scholar
  30. 30.
    J. Misra, G. Shit, J. Mech. Med. Biol. 7, 337 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Akbarzadeh et al., J. Mol. Liq. 220, 1 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Sheikholeslami, Eur. Phys. J. Plus 132, 55 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Esfahani et al., Int. J. Heat Mass Transfer 109, 1162 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Rahman et al., J. Mol. Liq. 218, 484 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Bhatti, A. Zeeshan, R. Ellahi, Microvasc. Res. 110, 32 (2017)CrossRefGoogle Scholar
  36. 36.
    P. Joshi, A. Pathak, B. Joshi, Appl. Appl. Math. 4, 343 (2009)MathSciNetGoogle Scholar
  37. 37.
    M.A. Ashburn et al., J. Pain 4, 291 (2003)CrossRefGoogle Scholar
  38. 38.
    K.K. Petersen et al., Int. J. Physiol. Pathophysiol. Pharm. 3, 236 (2011)Google Scholar
  39. 39.
    Y. Abd elmaboud, K.S. Mekheimer, Z. Naturforsch. A 67, 185 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Noreen Sher Akbar
    • 1
  • Dharmendra Tripathi
    • 2
  • O. Anwar Bég
    • 3
  1. 1.DBS&H CEME National University of Sciences and TechnologyIslamabadPakistan
  2. 2.Department of Mechanical EngineeringManipal University JaipurRajasthanIndia
  3. 3.Fluid Mechanics, Spray Research Group, School of Computing, Science and EngineeringUniversity of SalfordManchesterUK

Personalised recommendations