Advertisement

Quantum particle probe of the Kerr naked singularity

Regular Article

Abstract.

We investigate Kerr’s timelike naked singularity within the framework of quantum mechanics. A quantum particle in the form of a massive boson is sent in the plane \(\theta = \pi/2\) to the naked ring singularity of Kerr which develops for the overspinning case \((a>M)\) to test it from a quantum picture. This singularity is analysed in two different coordinate systems. We show that the spatial operator of the Klein-Gordon equation both in Boyer-Lindquist and in the dragging coordinate systems has a unique self-adjoint extension. As a result, the classical Kerr’s ring singularity becomes quantum regular, if it is probed with massive bosonic particles obeying the Klein-Gordon equation.

References

  1. 1.
    R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Wald, Ann. Phys. 83, 548 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    F. de Felice, Nature 273, 429 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    M. Colleoni, L. Barack, Phys. Rev. D 91, 104024 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    V.P. Frolov, I.D. Novikov, Black Hole Physics, Basic Concepts and New Devolepments (Kluwer, Dortrecht, Boston, London, 1998) p. 237Google Scholar
  6. 6.
    A. Ashtekar, J. Phys. Conf. Ser. 189, 012003 (2009)CrossRefGoogle Scholar
  7. 7.
    G.T. Horowitz, New J. Phys. 7, 201 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Natsuume, gr-qc/0108059Google Scholar
  9. 9.
    R.M. Wald, J. Math. Phys. (N.Y.) 21, 2082 (1980)Google Scholar
  10. 10.
    G.T. Horowitz, D. Marolf, Phys. Rev. D 52, 5670 (1995)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J.B. Griffiths, J. Podolsky, Exact Space-Times in Einstein’s General Relativity (Cambridge University Press, 2009)Google Scholar
  12. 12.
    R.P. Kerr, A. Schild, A new class of vacuum solutions of the Einstein field equations, in Atti del Convergno Sulla Relatività Generale: Problemi dell’Energia e Onde Gravitazionali (G Barbera, Florence, 1965)Google Scholar
  13. 13.
    A. Ishibashi, A. Hosoya, Phys. Rev. D 60, 104028 (1999)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H.R. Beyer, J. Math. Phys. 50, 012502 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    H. Weyl, Math. Ann. 68, 220 (1910)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. von Neumann, Math. Ann. 102, 49 (1929)CrossRefGoogle Scholar
  17. 17.
    C. Doran, Phys. Rev. D 61, 067503 (2000)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    X.-Qian Li, Ge-Rui Chen, Phys. Lett. B 751, 34 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    I. Seggev, Class. Quantum Grav. 21, 2651 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsEastern Mediterranean Universitynorth CyprusTurkey

Personalised recommendations