Advertisement

New exact solutions of time fractional modified Kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves

  • S. Saha Ray
  • S. Sahoo
Regular Article

Abstract.

In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely time fractional modified Kawahara equations by using the (\( G^{\prime}/G\))-expansion method via fractional complex transform. As a result, new types of exact analytical solutions are obtained.

References

  1. 1.
    A. Biswas, Appl. Math. Lett. 22, 208 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    N. Bibi, S.I.A. Tirmizi, S. Haq, Appl. Math. 2, 608 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    B.S. Kashkari, Appl. Math. Sci. 8, 3243 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Hasimoto, Kagaku 40, 401 (1970) (in Japanese)Google Scholar
  5. 5.
    T. Kakutani H. Ono, J. Phys. Soc. Jpn. 26, 1305 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    T. Kawahara, J. Phys. Soc. Jpn. 33, 260 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    T. Bridges, G. Derks, SIAM J. Math. Anal. 33, 1356 (2002)CrossRefGoogle Scholar
  8. 8.
    J.K. Hunter, J. Scheurle, Physica D 32, 253 (1988)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    I. Podlubny, Fractional differential Equation (Academic Press, New York, 1999)Google Scholar
  10. 10.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: Theory and Applications (Taylor and Francis, London, 2002)Google Scholar
  11. 11.
    S. Saha Ray, Appl. Math. Comput. 218, 5239 (2012)MathSciNetGoogle Scholar
  12. 12.
    T.M. Atanackovic, B. Stankovic, Z. Angew. Math. Mech. 82, 377 (2002)CrossRefGoogle Scholar
  13. 13.
    S. Sahoo, S. Saha Ray, S. Das, R.K. Bera, Int. J. Mod. Phys. C 27, 1650074 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa, Commun. Theor. Phys. 52, 992 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Saha Ray, S. Sahoo, Neural Comput. Appl. 26, 1495 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Saha Ray, S. Sahoo, Math. Methods Appl. Sci. 38, 2840 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Saha Ray, Fractional Calculus with Applications for Nuclear Reactor Dynamics (Boca Raton, 2016)Google Scholar
  18. 18.
    S. Das, Functional Fractional Calculus (Springer, New York, 2011)Google Scholar
  19. 19.
    A. Akgül, A. Kiliçman, M. Inc, Abstract Appl. Anal. 2013, 414353 (2013)CrossRefGoogle Scholar
  20. 20.
    G.W. Wang, X.Q. Liu, Y. Zhang, Appl. Math. 3, 523 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Bin, Commun. Theor. Phys. 58, 623 (2012)CrossRefGoogle Scholar
  22. 22.
    X.J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, 2012)Google Scholar
  23. 23.
    X.J. Yang, J. Appl. Libr. Inf. Sci. 1, 1 (2012)Google Scholar
  24. 24.
    X.J. Yang, Prespacetime J. 3, 913 (2012)Google Scholar
  25. 25.
    M.S. Hu, D. Baleanu, X.J. Yang, Math. Probl. Eng. 2013, 358473 (2013)Google Scholar
  26. 26.
    A. Bekir, Ö. Güner, A.C. Cevikel, Abstract Appl. Anal. 2013, 426462 (2013)CrossRefGoogle Scholar
  27. 27.
    W.H. Su, X.J. Yang, H. Jafari, D. Baleanu, Adv. Differ. Equ. 2013, 1 (2013)CrossRefGoogle Scholar
  28. 28.
    X.J. Yang, D. Baleanu, H.M. Srivastava, Local Fractional Integral Transforms and Their Applications (Academic Press, Elsevier, 2015)Google Scholar
  29. 29.
    J.H. He, S.K. Elagan, Z.B. Li, Phys. Lett. A 376, 257 (2012)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    O. Güner, A. Bekir, A.C. Cevikel, Eur. Phys. J. Plus 130, 146 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.National Institute of TechnologyDepartment of MathematicsRourkelaIndia

Personalised recommendations