Skip to main content
Log in

Multiplicity and pseudorapidity distributions of charged particles in asymmetric and deformed nuclear collisions in the wounded quark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The charged particle multiplicity (\(n_{ch}\)) and pseudorapidity density \(({\rm d}n_{ch}/{\rm d}\eta)\) are key observables to characterize the properties of matter created in heavy-ion collisions. The dependence of these observables on collision energy and the collision geometry are a key tool to understand the underlying particle production mechanism. Recently much interest has been focused on asymmetric and deformed nuclei collisions since these collisions can provide a deeper understanding about the nature of quantum chromodynamics (QCD). From the phenomenological perspective, a unified model which describes the experimental data coming from various kinds of collision experiments is much needed to provide physical insights on the production mechanism. In this paper, we have calculated the charged hadron multiplicities for nucleon-nucleus, such as proton-lead (p-Pb) and asymmetric nuclei collisions like deutron-gold (d-Au), and copper-gold (Cu-Au) within a new version of the wounded quark model (WQM) and we have shown their variation with respect to centrality. Further we have used a suitable density function within our WQM to calculate pseudorapidity density of charged hadrons at midrapidity in the collisions of deformed uranium nuclei. We found that our model with suitable density functions describes the experimental data for symmetric, asymmetric and deformed nuclei collisions simultaneously over a wide range of the collision energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Singh, Phys. Rep. 236, 147 (1993)

    Article  ADS  Google Scholar 

  2. P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl-th/030401

  3. I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)

    Article  ADS  Google Scholar 

  4. ALICE Collaboration (J. Adam), arXiv:nucl-ex/1509.07541

  5. ALICE Collaboration (E. Abbas et al.), Phys. Lett. B 726, 610 (2013)

    Article  ADS  Google Scholar 

  6. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  7. ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 754, 373 (2016)

    Article  ADS  Google Scholar 

  8. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 106, 032301 (2011)

    Article  ADS  Google Scholar 

  9. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 72, 031901(R) (2005)

    Article  Google Scholar 

  10. ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 719, 29 (2013)

    Article  ADS  Google Scholar 

  11. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 93, 082301 (2004)

    Article  Google Scholar 

  12. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)

    Article  ADS  Google Scholar 

  13. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 91, 064905 (2015)

    Article  ADS  Google Scholar 

  14. ALICE Collaboration (B. Abelev), arXiv:nucl-ex/1512.06104

  15. ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 728, 25 (2014)

    Article  ADS  Google Scholar 

  16. ALICE Collaboration (A. Toia), J. Phys. G: Nucl. Part. Phys. 38, 124007 (2011)

    Article  ADS  Google Scholar 

  17. PHENIX Collaboration (A. Iordanova), J. Phys.: Conf. Ser. 458, 012004 (2013)

    ADS  Google Scholar 

  18. ALICE Collaboration (C. Oppedisano), J. Phys.: Conf. Ser. 455, 012008 (2013)

    ADS  Google Scholar 

  19. PHENIX Collaboration (R.S. Hollis), Nucl. Phys. A 904-905, 507c (2013)

    Article  Google Scholar 

  20. L.-N. Gao, F.-H. Liu, Adv. High Energy Phys. 2015, 184713 (2015)

    Google Scholar 

  21. Y. Hirono, M. Hongo, Phys. Rev. C 72, 021903(R) (2014)

    Article  ADS  Google Scholar 

  22. B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 89, 064908 (2014)

    Article  ADS  Google Scholar 

  23. H. Masui, B. Mohanty, N. Xu, Phys. Lett. B 679, 440 (2009)

    Article  ADS  Google Scholar 

  24. STAR Collaboration (H. Wang, P. Sorensen), arXiv:nucl-ex/1406.7522

  25. U. Heinz, A. Kuhlman, arXiv:nucl-th/0411054

  26. A. Kuhlman, U. Heinz, arXiv:nucl-th/0506088

  27. A. Bzdak, V. Skokov, Phys. Rev. Lett. 111, 182301 (2013)

    Article  ADS  Google Scholar 

  28. J.L. Albacete, A. Dumitru, H. Fujii, Y. Nara, Nucl. Phys. A 897, 1 (2013)

    Article  ADS  Google Scholar 

  29. J.L. Albacete, A. Dumitru, arXiv:hep-ph/1011.5161

  30. A. Bialas, W. Czyz, W. Furmanski, Acta Phys. Pol. B 8, 585 (1977)

    Google Scholar 

  31. A. Bialas, K. Fialkowski, W. Slominski, M. Zielinski, Acta Phys. Pol. B 8, 855 (1977)

    Google Scholar 

  32. A. Bialas, W. Czyz, Acta Phys. Pol. B 10, 831 (1979)

    Google Scholar 

  33. V.V. Anisovich, Yu.M. Shabelski, V.M. Shekhter, Nucl. Phys. B 133, 477 (1978)

    Article  ADS  Google Scholar 

  34. A. Bialas, A. Bzdak, Phys. Rev. C 77, 034908 (2008)

    Article  ADS  Google Scholar 

  35. R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 52, 3 (1995)

    Article  Google Scholar 

  36. M. Mitrovski, T. Schuster, G. Graf, H. Petersen, M. Bleicher, Phys. Rev. C 79, 044901 (2009)

    Article  ADS  Google Scholar 

  37. P. Bozek, W. Broniowski, M. Rybczynski, Phys. Rev. C 94, 014902 (2016)

    Article  ADS  Google Scholar 

  38. H. Song, U.W. Heinz, Phys. Rev. C 78, 024902 (2016)

    Article  ADS  Google Scholar 

  39. F.W. Bopp, A. Capella, J. Ranft, J. Tran Thanh Van, Z. Phys. C 51, 99 (1990)

    Article  Google Scholar 

  40. M.A. Braun, F. del Moral, C. Pajares, Phys. Rev. C 65, 024907 (2002)

    Article  ADS  Google Scholar 

  41. S. Eremin, S. Voloshin, Phys. Rev. C 67, 064905 (2003)

    Article  ADS  Google Scholar 

  42. P.K. Netrakanti, B. Mohanty, Phys. Rev. C 70, 027901 (2004)

    Article  ADS  Google Scholar 

  43. A. Dumitru, D.E. Kharzeev, E.M. Levin, Y. Narag, arXiv:hep-ph/1111.3031

  44. G.G. Barnafoldi, J. Barrette, M. Gyulassy, P. Levai, V. Topor Pop, arXiv:hep-ph/1111.3646

  45. R.A. Lacey, P. Liu, N. Magdy, M. Csand, B. Schweid, N.N. Ajitanand, J. Alexander, R. Pak, arXiv:nucl-ex/1601.06001

  46. L. Zheng, Z. Yin, Eur. Phys. J. A 52, 45 (2016)

    Article  ADS  Google Scholar 

  47. J.T. Mitchell, D.V. Perepelitsa, M.J. Tannenbaum, P.W. Stankus, Phys. Rev. C 93, 054910 (2016)

    Article  ADS  Google Scholar 

  48. C. Loizides, Phys. Rev. C 94, 024914 (2016)

    Article  ADS  Google Scholar 

  49. C.P. Singh, M. Shyam, S.K. Tuli, Phys. Rev. C 40, 1716 (1989)

    Article  ADS  Google Scholar 

  50. C.P. Singh, M. Shyam, Phys. Lett. B 171, 125 (1986)

    Article  ADS  Google Scholar 

  51. M. Shyam, C.P. Singh, S.K. Tuli, Phys. Lett. B 164, 189 (1985)

    Article  ADS  Google Scholar 

  52. A. Kumar, B.K. Singh, P.K. Srivastava, C.P. Singh, Eur. Phys. J. Plus 128, 45 (2013)

    Article  Google Scholar 

  53. A. Kumar, P.K. Srivastava, B.K. Singh, C.P. Singh, Adv. High Energy Phys. 2013, 352180 (2013)

    Article  Google Scholar 

  54. PHOBOS Collaboration (B.B. Back), arXiv:nucl-ex/0301017

  55. S. Jeon, V.T. Pop, M. Bleicher, Phys. Rev. C 69, 044904 (2004)

    Article  ADS  Google Scholar 

  56. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 88, 022302 (2002)

    Google Scholar 

  57. G. Arnison et al., Phys. Lett. B 123, 108 (1983)

    Article  ADS  Google Scholar 

  58. C. Albajar et al., Nucl. Phys. B 335, 261 (1990)

    Article  ADS  Google Scholar 

  59. R.E. Ansorge et al., Z. Phys. C 43, 357 (1989)

    Article  ADS  Google Scholar 

  60. G.J. Alner et al., Phys. Lett. B 160, 193 (1985)

    Article  ADS  Google Scholar 

  61. G.J. Alner et al., Phys. Rep. 154, 247 (1987)

    Article  ADS  Google Scholar 

  62. F. Abe et al., Phys. Rev. D 41, 2330 (1990)

    Article  ADS  Google Scholar 

  63. W. Thome et al., Nucl. Phys. B 129, 365 (1977)

    Article  ADS  Google Scholar 

  64. J.-X. Sun, F.-H. Liu, E.-Q. Wang, Y. Sun, Z. Sun, Phys. Rev. C 83, 014001 (2011)

    Article  ADS  Google Scholar 

  65. R. Nouicer et al., J. Phys. G 30, S1133 (2004)

    Article  ADS  Google Scholar 

  66. B.I. Abelev et al., Phys. Rev. C 79, 034909 (2009)

    Article  ADS  Google Scholar 

  67. K. Aamodt et al., Eur. Phys. J. C 68, 89 (2010)

    Article  ADS  Google Scholar 

  68. K. Aamodt et al., Eur. Phys. J. C 65, 111 (2010)

    Article  ADS  Google Scholar 

  69. V. Khachatryan et al., JHEP 02, 041 (2010)

    Article  ADS  Google Scholar 

  70. V. Khachatryan et al., Phys. Rev. Lett. 105, 022002 (2010)

    Article  ADS  Google Scholar 

  71. C. Loizides, J. Nagle, P. Steinberg, arXiv:nucl-ex/1408.2549

  72. Q.Y. Shou et al., Phys. Lett. B 749, 215 (2015)

    Article  ADS  Google Scholar 

  73. A.N. Mishra, P. Sahoo, P. Pareek, N.K. Behera, R. Sahoo, B.K. Nandi, arXiv:hep-ph/1505.00700

  74. P.K. Srivastava, C.P. Singh, Phys. Rev. D 85, 114016 (2012)

    Article  ADS  Google Scholar 

  75. P. Ghosh, S. Ghosh, J. Mitra, N. Bera, Eur. J. Phys. 36, 055046 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, O.S.K., Srivastava, P.K., Kumar, A. et al. Multiplicity and pseudorapidity distributions of charged particles in asymmetric and deformed nuclear collisions in the wounded quark model. Eur. Phys. J. Plus 131, 438 (2016). https://doi.org/10.1140/epjp/i2016-16438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16438-2

Navigation