Multiplicity and pseudorapidity distributions of charged particles in asymmetric and deformed nuclear collisions in the wounded quark model

  • O. S. K. Chaturvedi
  • P. K. Srivastava
  • Ashwini Kumar
  • B. K. Singh
Regular Article

Abstract.

The charged particle multiplicity (\(n_{ch}\)) and pseudorapidity density \(({\rm d}n_{ch}/{\rm d}\eta)\) are key observables to characterize the properties of matter created in heavy-ion collisions. The dependence of these observables on collision energy and the collision geometry are a key tool to understand the underlying particle production mechanism. Recently much interest has been focused on asymmetric and deformed nuclei collisions since these collisions can provide a deeper understanding about the nature of quantum chromodynamics (QCD). From the phenomenological perspective, a unified model which describes the experimental data coming from various kinds of collision experiments is much needed to provide physical insights on the production mechanism. In this paper, we have calculated the charged hadron multiplicities for nucleon-nucleus, such as proton-lead (p-Pb) and asymmetric nuclei collisions like deutron-gold (d-Au), and copper-gold (Cu-Au) within a new version of the wounded quark model (WQM) and we have shown their variation with respect to centrality. Further we have used a suitable density function within our WQM to calculate pseudorapidity density of charged hadrons at midrapidity in the collisions of deformed uranium nuclei. We found that our model with suitable density functions describes the experimental data for symmetric, asymmetric and deformed nuclei collisions simultaneously over a wide range of the collision energy.

References

  1. 1.
    C.P. Singh, Phys. Rep. 236, 147 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl-th/030401Google Scholar
  3. 3.
    I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    ALICE Collaboration (J. Adam), arXiv:nucl-ex/1509.07541Google Scholar
  5. 5.
    ALICE Collaboration (E. Abbas et al.), Phys. Lett. B 726, 610 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 754, 373 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 106, 032301 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 72, 031901(R) (2005)CrossRefGoogle Scholar
  10. 10.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 719, 29 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 93, 082301 (2004)CrossRefGoogle Scholar
  12. 12.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 91, 064905 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    ALICE Collaboration (B. Abelev), arXiv:nucl-ex/1512.06104Google Scholar
  15. 15.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 728, 25 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    ALICE Collaboration (A. Toia), J. Phys. G: Nucl. Part. Phys. 38, 124007 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    PHENIX Collaboration (A. Iordanova), J. Phys.: Conf. Ser. 458, 012004 (2013)ADSGoogle Scholar
  18. 18.
    ALICE Collaboration (C. Oppedisano), J. Phys.: Conf. Ser. 455, 012008 (2013)ADSGoogle Scholar
  19. 19.
    PHENIX Collaboration (R.S. Hollis), Nucl. Phys. A 904-905, 507c (2013)CrossRefGoogle Scholar
  20. 20.
    L.-N. Gao, F.-H. Liu, Adv. High Energy Phys. 2015, 184713 (2015)Google Scholar
  21. 21.
    Y. Hirono, M. Hongo, Phys. Rev. C 72, 021903(R) (2014)ADSCrossRefGoogle Scholar
  22. 22.
    B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 89, 064908 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    H. Masui, B. Mohanty, N. Xu, Phys. Lett. B 679, 440 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    STAR Collaboration (H. Wang, P. Sorensen), arXiv:nucl-ex/1406.7522Google Scholar
  25. 25.
    U. Heinz, A. Kuhlman, arXiv:nucl-th/0411054
  26. 26.
    A. Kuhlman, U. Heinz, arXiv:nucl-th/0506088
  27. 27.
    A. Bzdak, V. Skokov, Phys. Rev. Lett. 111, 182301 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    J.L. Albacete, A. Dumitru, H. Fujii, Y. Nara, Nucl. Phys. A 897, 1 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    J.L. Albacete, A. Dumitru, arXiv:hep-ph/1011.5161Google Scholar
  30. 30.
    A. Bialas, W. Czyz, W. Furmanski, Acta Phys. Pol. B 8, 585 (1977)Google Scholar
  31. 31.
    A. Bialas, K. Fialkowski, W. Slominski, M. Zielinski, Acta Phys. Pol. B 8, 855 (1977)Google Scholar
  32. 32.
    A. Bialas, W. Czyz, Acta Phys. Pol. B 10, 831 (1979)Google Scholar
  33. 33.
    V.V. Anisovich, Yu.M. Shabelski, V.M. Shekhter, Nucl. Phys. B 133, 477 (1978)ADSCrossRefGoogle Scholar
  34. 34.
    A. Bialas, A. Bzdak, Phys. Rev. C 77, 034908 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 52, 3 (1995)CrossRefGoogle Scholar
  36. 36.
    M. Mitrovski, T. Schuster, G. Graf, H. Petersen, M. Bleicher, Phys. Rev. C 79, 044901 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    P. Bozek, W. Broniowski, M. Rybczynski, Phys. Rev. C 94, 014902 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    H. Song, U.W. Heinz, Phys. Rev. C 78, 024902 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    F.W. Bopp, A. Capella, J. Ranft, J. Tran Thanh Van, Z. Phys. C 51, 99 (1990)CrossRefGoogle Scholar
  40. 40.
    M.A. Braun, F. del Moral, C. Pajares, Phys. Rev. C 65, 024907 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    S. Eremin, S. Voloshin, Phys. Rev. C 67, 064905 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    P.K. Netrakanti, B. Mohanty, Phys. Rev. C 70, 027901 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    A. Dumitru, D.E. Kharzeev, E.M. Levin, Y. Narag, arXiv:hep-ph/1111.3031Google Scholar
  44. 44.
    G.G. Barnafoldi, J. Barrette, M. Gyulassy, P. Levai, V. Topor Pop, arXiv:hep-ph/1111.3646Google Scholar
  45. 45.
    R.A. Lacey, P. Liu, N. Magdy, M. Csand, B. Schweid, N.N. Ajitanand, J. Alexander, R. Pak, arXiv:nucl-ex/1601.06001Google Scholar
  46. 46.
    L. Zheng, Z. Yin, Eur. Phys. J. A 52, 45 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    J.T. Mitchell, D.V. Perepelitsa, M.J. Tannenbaum, P.W. Stankus, Phys. Rev. C 93, 054910 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    C. Loizides, Phys. Rev. C 94, 024914 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    C.P. Singh, M. Shyam, S.K. Tuli, Phys. Rev. C 40, 1716 (1989)ADSCrossRefGoogle Scholar
  50. 50.
    C.P. Singh, M. Shyam, Phys. Lett. B 171, 125 (1986)ADSCrossRefGoogle Scholar
  51. 51.
    M. Shyam, C.P. Singh, S.K. Tuli, Phys. Lett. B 164, 189 (1985)ADSCrossRefGoogle Scholar
  52. 52.
    A. Kumar, B.K. Singh, P.K. Srivastava, C.P. Singh, Eur. Phys. J. Plus 128, 45 (2013)CrossRefGoogle Scholar
  53. 53.
    A. Kumar, P.K. Srivastava, B.K. Singh, C.P. Singh, Adv. High Energy Phys. 2013, 352180 (2013)CrossRefGoogle Scholar
  54. 54.
    PHOBOS Collaboration (B.B. Back), arXiv:nucl-ex/0301017
  55. 55.
    S. Jeon, V.T. Pop, M. Bleicher, Phys. Rev. C 69, 044904 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 88, 022302 (2002)Google Scholar
  57. 57.
    G. Arnison et al., Phys. Lett. B 123, 108 (1983)ADSCrossRefGoogle Scholar
  58. 58.
    C. Albajar et al., Nucl. Phys. B 335, 261 (1990)ADSCrossRefGoogle Scholar
  59. 59.
    R.E. Ansorge et al., Z. Phys. C 43, 357 (1989)ADSCrossRefGoogle Scholar
  60. 60.
    G.J. Alner et al., Phys. Lett. B 160, 193 (1985)ADSCrossRefGoogle Scholar
  61. 61.
    G.J. Alner et al., Phys. Rep. 154, 247 (1987)ADSCrossRefGoogle Scholar
  62. 62.
    F. Abe et al., Phys. Rev. D 41, 2330 (1990)ADSCrossRefGoogle Scholar
  63. 63.
    W. Thome et al., Nucl. Phys. B 129, 365 (1977)ADSCrossRefGoogle Scholar
  64. 64.
    J.-X. Sun, F.-H. Liu, E.-Q. Wang, Y. Sun, Z. Sun, Phys. Rev. C 83, 014001 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    R. Nouicer et al., J. Phys. G 30, S1133 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    B.I. Abelev et al., Phys. Rev. C 79, 034909 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    K. Aamodt et al., Eur. Phys. J. C 68, 89 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    K. Aamodt et al., Eur. Phys. J. C 65, 111 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    V. Khachatryan et al., JHEP 02, 041 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    V. Khachatryan et al., Phys. Rev. Lett. 105, 022002 (2010)ADSCrossRefGoogle Scholar
  71. 71.
    C. Loizides, J. Nagle, P. Steinberg, arXiv:nucl-ex/1408.2549Google Scholar
  72. 72.
    Q.Y. Shou et al., Phys. Lett. B 749, 215 (2015)ADSCrossRefGoogle Scholar
  73. 73.
    A.N. Mishra, P. Sahoo, P. Pareek, N.K. Behera, R. Sahoo, B.K. Nandi, arXiv:hep-ph/1505.00700Google Scholar
  74. 74.
    P.K. Srivastava, C.P. Singh, Phys. Rev. D 85, 114016 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    P. Ghosh, S. Ghosh, J. Mitra, N. Bera, Eur. J. Phys. 36, 055046 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • O. S. K. Chaturvedi
    • 1
  • P. K. Srivastava
    • 1
  • Ashwini Kumar
    • 2
  • B. K. Singh
    • 1
  1. 1.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.School of Physical SciencesNational Institute of Science Education and ResearchBhubaneswarIndia

Personalised recommendations