Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction

  • Tasawar Hayat
  • Sajid Qayyum
  • Bashir Ahmad
  • Muhammad Waqas
Regular Article

Abstract.

The objective of present paper is to examine the thermal radiation effects in the two-dimensional mixed convection flow of a tangent hyperbolic fluid near a stagnation point. The analysis is performed in the presence of heat generation/absorption and chemical reaction. Convective boundary conditions for heat and mass transfer are employed. The resulting partial differential equations are reduced into nonlinear ordinary differential equations using appropriate transformations. Series solutions of momentum, energy and concentration equations are computed. The characteristics of various physical parameters on the distributions of velocity, temperature and concentration are analyzed graphically. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and examined. It is observed that larger values of thermal and concentration Biot numbers enhance the temperature and concentration distributions.

References

  1. 1.
    N. Freidoonimehr et al., Math. Prob. Eng. 2014, 692728 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    T. Hayat et al., Int. J. Nonlinear Sci. Numer. Simulat. 15, 365 (2014)MathSciNetGoogle Scholar
  3. 3.
    M. Sheikholeslami et al., Eng. Comput. 30, 357 (2013)CrossRefGoogle Scholar
  4. 4.
    T. Hayat et al., Open Phys. 13, 188 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Mukhopadhyay, Afr. Math. 25, 1 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Aziz, Commun. Nonlinear Sci. Numer. Simulat. 14, 1064 (2009)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Hayat et al., J. Mol. Liq. 223, 969 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Sulochana et al., J. Nigerian Math. Soc. 35, 128 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S.A. Shehzad et al., J. Magn. & Magn. Mater. 397, 108 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    T. Hayat et al., J. Mol. Liq. 215, 704 (2016)CrossRefGoogle Scholar
  11. 11.
    E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, London)Google Scholar
  12. 12.
    T. Hayat et al., Int. J. Heat Mass Transfer 54, 3777 (2011)CrossRefGoogle Scholar
  13. 13.
    S.A. Shehzad et al., Braz. J. Chem. Eng. 30, 187 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Awais et al., Int. J. Numer. Methods Heat Fluid Flow 24, 483 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Kandasamy et al., Commun. Nonlinear Sci. Numer. Simulat. 15, 2109 (2010)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.M. Rashad et al., Int. J. Numer. Methods Heat Fluid Flow 24, 1124 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    T. Hayat, Chin. J. Chem. Eng. (2016) DOI:10.1016/j.cjche.2016.06.008
  18. 18.
    S. Mukhopadhyay, K. Bhattacharyya, J. Egypt. Math. Soc. 20, 229 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    S.A. Shehzad et al., J. Appl. Fluid Mech. 8, 465 (2015)ADSGoogle Scholar
  20. 20.
    S.M. Ibrahim, Chem. Process. Eng. Res. 19, 25 (2014)Google Scholar
  21. 21.
    M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 59, 167 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Mukhopadhyay, Int. J. Heat Mass Transfer 52, 3261 (2009)CrossRefGoogle Scholar
  23. 23.
    C.-H. Chen, Int. J. Non-Linear Mech. 44, 596 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    T. Hayat et al., J. Mech. 29, 403 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Mukhopadhyay, Meccanica 48, 1717 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Y.Y. Lok et al., Int. J. Thermal Sci. 59, 186 (2012)CrossRefGoogle Scholar
  27. 27.
    K. Bhattacharyya, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simulat. 17, 2728 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    T. Hayat et al., Int. J. Nonlinear Sci. Numer. Simulat. 15, 77 (2014)MathSciNetGoogle Scholar
  29. 29.
    M.M. Rashidi, E. Erfani, Comput. Fluids 40, 172 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations (Springer & Higher Education Press, Heidelberg, 2012)Google Scholar
  31. 31.
    M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 57, 82 (2013)CrossRefGoogle Scholar
  32. 32.
    T. Hayat et al., Int. J. Heat Mass Transfer 103, 99 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Waqas et al., Int. J. Heat Mass Transfer 102, 766 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Zheng et al., J. Franklin Inst. 350, 990 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    T. Hayat et al., Alex. Eng. J. 54, 205 (2015)CrossRefGoogle Scholar
  36. 36.
    T. Hayat et al., J. Mol. Liq. 224, 811 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tasawar Hayat
    • 1
    • 2
  • Sajid Qayyum
    • 1
  • Bashir Ahmad
    • 2
  • Muhammad Waqas
    • 1
  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations