Advertisement

Non-linear heat and mass transfer in a MHD Homann nanofluid flow through a porous medium with chemical reaction, heat generation and uniform inflow

  • N. T. EL-Dabe
  • H. A. Attia
  • M. A. I. Essawy
  • A. A. Ramadan
  • A. H. Abdel-Hamid
Regular Article

Abstract.

The steady MHD axisymmetric flow of an incompressible viscous electrically conducting nanofluid impinging on a permeable plate is investigated with heat and mass transfer. An external uniform magnetic field as well as a uniform inflow, in the presence of either suction or injection, are applied normal to the plate. The effects of heat (generation/absorption) and chemical reaction have been accentuated. This study indicates the incorporated influence of both the thermophoresis phenomenon and the Brownian behavior. Numerical solutions for the governing non-linear momentum, energy and nanoparticle equations have been obtained. The rates of heat and mass transfer are presented and discussed.

References

  1. 1.
    K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder, in Dingler Polytechnisches Journal, Vol. 326 (1911) pp. 321--410Google Scholar
  2. 2.
    F. Homann, Z. Angew. Math. Mech. 16, 153 (1936)CrossRefGoogle Scholar
  3. 3.
    H. Schlichting, K. Bussmann, Exakte Lösungen für die laminare Grenzschicht mit Absaugung und Ausblasen, in Schriften der Deutschen Akademie der Luftfahrtforschung: B, Vol. 7 (Oldenbourg, 1943) p. 25Google Scholar
  4. 4.
    J.H. Preston, Reports and Memoirs (British Aerospace Research Council, London, 1946) No. 2244Google Scholar
  5. 5.
    P.D. Ariel, J. Appl. Mech. 61, 976 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    P.D. Weidman, S. Mahalingam, J. Eng. Math. 31, 305 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    T.Y. Na, Computational Methods in Engineering Boundary Value Problem (Academic Press, New York, 1979)Google Scholar
  8. 8.
    S.R. Pop, T. Grosan, I. Pop, Tech. Mech. 25, 100 (2004)Google Scholar
  9. 9.
    K. Sadeghy, H. Hajibeygi, S.M. Taghavi, Int. J. Non-Linear Mech. 41, 1242 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    V. Kumaran, R. Tamizharasi, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 14, 2677 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Massoudi, M. Ramezan, Boundary layer heat transfer analysis of a viscoelastic fluid at a stagnation point, in ASME Heat Transfer Division, Vol 130 (ASME, 1990) pp. 81--86Google Scholar
  12. 12.
    M. Massoudi, M. Ramezan, Mech. Res. Commun. 19, 129 (1992)CrossRefGoogle Scholar
  13. 13.
    V.K. Garg, Acta Mech. 104, 159 (1994)CrossRefGoogle Scholar
  14. 14.
    H.A. Attia, Turkish J. Eng. Environ. Sci. 30, 299 (2006)Google Scholar
  15. 15.
    Dinesh Rajotia, R.N. Jat, Chin. Phys. B 23, 074701 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Krishnendu Bhattacharyya, Chin. Phys. B 22, 074705 (2013)CrossRefGoogle Scholar
  17. 17.
    S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, in Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, H.P. Wang, Vol. FED 231 (ASME, New York, 1995) pp. 99--105Google Scholar
  18. 18.
    J. Buongiorno, J. Heat Transfer 128, 240 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, NetsuBussei 4, 227 (1993)Google Scholar
  20. 20.
    J. Buongiorno, W. Hu, in Proceedings of International Congress on Advances in Nuclear Power Plants, Seoul, 2005 (Curran Associate, 2007) 5705Google Scholar
  21. 21.
    N. Prabhat, J. Buongiorno, Lin-Wen Hu, J. Nanofluids 1, 55 (2012)CrossRefGoogle Scholar
  22. 22.
    A.V. Kuznetsov, D.A. Nield, Int. J. Thermal Sci. 49, 243 (2010)CrossRefGoogle Scholar
  23. 23.
    Noreen Sher Akbar, S. Nadeem, Rizwan Ul-Haq, Z.H. Khan, Chin. J. Aeronaut. 26, 1389 (2013)CrossRefGoogle Scholar
  24. 24.
    H.A. Attia, Can. J. Phys. 81, 1223 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    M.R. Krishnamurthy, B.C. Prasannakumara, B.J. Gireesha, R.S.R. Gorla, Eng. Sci. Technol. Int. J. 19, 53 (2016)CrossRefGoogle Scholar
  26. 26.
    B.C. Prasannakumara, M.R. Krishnamurthy, B.J. Gireesha, R.S.R. Gorla, J. Nanofluids 5, 82 (2016)CrossRefGoogle Scholar
  27. 27.
    W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)CrossRefGoogle Scholar
  28. 28.
    N. Bachok, A. Ishak, I. Pop, Int. J. Heat Mass Transfer 55, 6499 (2012)CrossRefGoogle Scholar
  29. 29.
    O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 49, 1813 (2010)CrossRefGoogle Scholar
  30. 30.
    O.D. Makinde, W.A. Khan, Z.H. Khan, Int. J. Heat Mass Transfer 62, 526 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Wahiduzzaman, M.S. Khanb, I. Karimb, Proc. Eng. 105, 398 (2015)CrossRefGoogle Scholar
  32. 32.
    Kalidas Das, Microfluid Nanofluid 15, 267 (2013)CrossRefGoogle Scholar
  33. 33.
    M.A.A. Hamad, I. Pop, Transp. Porous Med. 87, 25 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    S. Mansur, A. Ishak, I. Pop, PLoS ONE 10, e0117733 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Khalili, S. Dinarvand, R. Hosseini, H. Tamim, I. Pop, Chin. Phys. B 23, 048203 (2014)CrossRefGoogle Scholar
  36. 36.
    D. Pal, G. Mandal, K. Vajravalu, Commun. Numer. Anal. 2015, 30 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    S.E. Ahmed, A.M. Aly, M.A. Mansour, J. Nanofluids 4, 528 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Thiagarajan, M. Selvaraj, J. Nanofluids 4, 328 (2015)CrossRefGoogle Scholar
  39. 39.
    G.W. Sutton, A. Sherman, Engineering Magnetohydrodynamics (McGraw-Hill, New York, 1965)Google Scholar
  40. 40.
    N.T. El-Dabe, Can. J. Phys. 64, 84 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    D.B. Ingham, I. Pop, Transport Phenomena in Porous Media (Pergamon, Oxford, 2002)Google Scholar
  42. 42.
    N.T. Eldabe, M.Y. Abou-zeid, Arab J. Sci. Eng. 39, 5045 (2014)CrossRefGoogle Scholar
  43. 43.
    A.R.A. Khaled, K. Vafai, Int. J. Heat Mass Transfer 46, 4989 (2003)CrossRefGoogle Scholar
  44. 44.
    H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968)Google Scholar
  45. 45.
    M.F. White, Viscous Fluid Flow (McGraw-Hill, New York, 1991)Google Scholar
  46. 46.
    W.F. Ames, Numerical Solutions of Partial Differential Equations, 2nd edition (Academic Press, New York, 1977)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • N. T. EL-Dabe
    • 1
  • H. A. Attia
    • 2
  • M. A. I. Essawy
    • 3
  • A. A. Ramadan
    • 4
  • A. H. Abdel-Hamid
    • 4
  1. 1.Department of Mathematics, Faculty of EducationAin Shams UniversityCairoEgypt
  2. 2.Department of Engineering Mathematics and Physics, Faculty of EngineeringFayoum UniversityFayoumEgypt
  3. 3.Higher Technological Institute (HTI)6th of October City, GizaEgypt
  4. 4.Mathematics Department, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations